noscare1 commited on
Commit
cfd7540
·
verified ·
1 Parent(s): d763cdb

Update app.py

Browse files

change model to llama3

Files changed (1) hide show
  1. app.py +56 -61
app.py CHANGED
@@ -1,63 +1,58 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
 
 
 
 
 
 
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+ import os
5
+
6
+ model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
7
+ device_map = 'cuda'
8
+
9
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
+
11
+ def load_model() -> AutoModelForCausalLM:
12
+ return AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map)
13
+
14
+ def load_tokenizer() -> AutoTokenizer:
15
+ return AutoTokenizer.from_pretrained(model_name)
16
+
17
+ def preprocess_messages(message: str, history: list, system_prompt: str) -> dict:
18
+ messages = [{'role': 'system', 'content': system_prompt}, {'role': 'user', 'content': message}]
19
+ prompt = load_tokenizer().apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
20
+ return prompt
21
+
22
+ def generate_text(prompt: str, max_new_tokens: int, temperature: float) -> str:
23
+ model = load_model()
24
+ terminators = [load_tokenizer().eos_token_id, load_tokenizer().convert_tokens_to_ids(['\n'])]
25
+ temp = temperature + 0.1
26
+ outputs = model.generate(
27
+ prompt,
28
+ max_new_tokens=max_new_tokens,
29
+ eos_token_id=terminators[0],
30
+ do_sample=True,
31
+ temperature=temp,
32
+ top_p=0.9
33
+ )
34
+ return load_tokenizer().decode(outputs[0], skip_special_tokens=True)
35
+
36
+ def chat_function(
37
+ message: str,
38
+ history: list,
39
+ system_prompt: str,
40
+ max_new_tokens: int,
41
+ temperature: float
42
+ ) -> str:
43
+ prompt = preprocess_messages(message, history, system_prompt)
44
+ return generate_text(prompt, max_new_tokens, temperature)
45
+
46
+ gr.ChatInterface(
47
+ chat_function,
48
+ chatbot=gr.Chatbot(height=400),
49
+ textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
50
+ title="LLAMA3 Chat",
51
+ description="""Chat with llama3""",
52
+ theme="soft",
53
  additional_inputs=[
54
+ gr.Textbox("You shall answer to all the questions as very smart AI", label="System Prompt"),
55
+ gr.Slider(512, 4096, label="Max New Tokens"),
56
+ gr.Slider(0, 1, label="Temperature")
57
+ ]
58
+ ).launch(debug=True)