|
import torch |
|
import torchaudio |
|
from einops import rearrange |
|
import gradio as gr |
|
from stable_audio_tools import get_pretrained_model |
|
from stable_audio_tools.inference.generation import generate_diffusion_cond |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model, config = get_pretrained_model("stabilityai/stable-audio-open-small") |
|
model = model.to(device) |
|
sample_rate = config["sample_rate"] |
|
sample_size = config["sample_size"] |
|
|
|
def generate_audio(prompt): |
|
conditioning = [{"prompt": prompt, "seconds_total": 11}] |
|
with torch.no_grad(): |
|
output = generate_diffusion_cond( |
|
model, |
|
steps=8, |
|
conditioning=conditioning, |
|
sample_size=sample_size, |
|
device=device |
|
) |
|
output = rearrange(output, "b d n -> d (b n)") |
|
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() |
|
path = "output.wav" |
|
torchaudio.save(path, output, sample_rate) |
|
return path |
|
|
|
ui = gr.Interface(fn=generate_audio, |
|
inputs=gr.Textbox(label="Prompt (e.g. 128 BPM tech house drum loop)"), |
|
outputs=gr.Audio(type="filepath"), |
|
title="Stable Audio Generator") |
|
|
|
ui.launch() |
|
|