File size: 6,952 Bytes
f448bd6 5870362 f448bd6 5870362 f448bd6 5870362 e989198 0079a24 5870362 f448bd6 5870362 f448bd6 5870362 f448bd6 c2463ad f448bd6 c2463ad f448bd6 c2463ad f448bd6 c2463ad f448bd6 6c0dd69 f448bd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import streamlit as st
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
from gliner import GLiNER
import os
from comet_ml import Experiment
st.subheader("8-Named Entity Recognition Web App", divider = "red")
st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type = "tertiary")
expander = st.expander("**Important notes on the 8-Named Entity Recognition Web App**")
expander.write('''
**Named Entities:**
This 8-Named Entity Recognition Web App predicts eight (8) labels (“person”, “country”, “city”, “organization”, “date”, “money”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
**How to Use:**
Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:**
Unlimited number of Result requests.
**Customization:**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**Technical issues:**
If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at info@nlpblogs.com
''')
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Related NLP Web Apps", divider = "red")
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type = "primary")
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
else:
comet_initialized = False
st.warning("Comet ML not initialized. Check environment variables.")
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.write("**Input text**: ", text)
def clear_text():
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
st.divider()
if st.button("Results"):
with st.spinner("Wait for it...", show_time=True):
time.sleep(5)
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
entities = model.predict_entities(text, labels)
df = pd.DataFrame(entities)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled)
with st.expander("See Glossary of tags"):
st.write('''
'**text**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
'**label**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
if df is not None:
fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
values='score', color='label')
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
st.subheader("Tree map", divider = "red")
st.plotly_chart(fig)
if comet_initialized:
experiment.log_figure(figure=fig, figure_name="entity_treemap")
if df is not None:
value_counts1 = df['label'].value_counts()
df1 = pd.DataFrame(value_counts1)
final_df = df1.reset_index().rename(columns={"index": "label"})
col1, col2 = st.columns(2)
with col1:
fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
fig1.update_traces(textposition='inside', textinfo='percent+label')
st.subheader("Pie Chart", divider = "red")
st.plotly_chart(fig1)
if comet_initialized:
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
with col2:
fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
st.subheader("Bar Chart", divider = "red")
st.plotly_chart(fig2)
if comet_initialized:
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
dfa = pd.DataFrame(
data={
'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
'start': ['index of the start of the corresponding entity'],
'end': ['index of the end of the corresponding entity'],
})
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="zip file.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
st.divider()
if comet_initialized:
experiment.end() |