Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,6 +15,7 @@ from langchain.document_loaders.pdf import PyMuPDFLoader
|
|
| 15 |
import os
|
| 16 |
#import fitz
|
| 17 |
#import tempfile
|
|
|
|
| 18 |
|
| 19 |
img = Image.open('image/nexio_logo1.png')
|
| 20 |
st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered")
|
|
@@ -59,21 +60,26 @@ def main():
|
|
| 59 |
|
| 60 |
# Accept user question
|
| 61 |
query = st.text_input("Ask questions about your PDF file:")
|
| 62 |
-
|
| 63 |
if query:
|
| 64 |
|
| 65 |
#PATH = 'model/'
|
| 66 |
#llm = AutoModelForCausalLM.from_pretrained("CohereForAI/aya-101")
|
| 67 |
# llm = AutoModelForCausalLM.from_pretrained(PATH,local_files_only=True)
|
| 68 |
llm = huggingface_hub.HuggingFaceHub(repo_id="google/flan-t5-small",
|
| 69 |
-
model_kwargs={"temperature":1.0, "max_length":
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
st.write(response)
|
| 78 |
|
| 79 |
|
|
|
|
| 15 |
import os
|
| 16 |
#import fitz
|
| 17 |
#import tempfile
|
| 18 |
+
from langchain.chains.summarize import load_summarize_chain
|
| 19 |
|
| 20 |
img = Image.open('image/nexio_logo1.png')
|
| 21 |
st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered")
|
|
|
|
| 60 |
|
| 61 |
# Accept user question
|
| 62 |
query = st.text_input("Ask questions about your PDF file:")
|
| 63 |
+
|
| 64 |
if query:
|
| 65 |
|
| 66 |
#PATH = 'model/'
|
| 67 |
#llm = AutoModelForCausalLM.from_pretrained("CohereForAI/aya-101")
|
| 68 |
# llm = AutoModelForCausalLM.from_pretrained(PATH,local_files_only=True)
|
| 69 |
llm = huggingface_hub.HuggingFaceHub(repo_id="google/flan-t5-small",
|
| 70 |
+
model_kwargs={"temperature":1.0, "max_length":256})
|
| 71 |
+
if query == 'Summarize':
|
| 72 |
+
docs = pdf_reader.load_and_split()
|
| 73 |
+
chain = load_summarize_chain(llm, chain_type="map_reduce")
|
| 74 |
+
response = chain.run(docs)
|
| 75 |
+
else:
|
| 76 |
+
docs = vector_store.similarity_search(query=query, k=2)
|
| 77 |
+
#st.write(docs)
|
| 78 |
+
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
| 79 |
+
response = chain.run(input_documents=docs, question=query)
|
| 80 |
+
#retriever=vector_store.as_retriever()
|
| 81 |
+
#chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=retriever)
|
| 82 |
+
#response = chain.run(chain)
|
| 83 |
st.write(response)
|
| 84 |
|
| 85 |
|