Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,341 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
),
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import base64
|
3 |
+
import mimetypes
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import struct
|
7 |
+
import tempfile
|
8 |
+
import asyncio
|
9 |
+
from google import genai
|
10 |
+
from google.genai import types
|
11 |
+
|
12 |
+
|
13 |
+
def save_binary_file(file_name, data):
|
14 |
+
"""Save binary data to a file."""
|
15 |
+
with open(file_name, "wb") as f:
|
16 |
+
f.write(data)
|
17 |
+
return file_name
|
18 |
+
|
19 |
+
|
20 |
+
def convert_to_wav(audio_data: bytes, mime_type: str) -> bytes:
|
21 |
+
"""Generates a WAV file header for the given audio data and parameters."""
|
22 |
+
parameters = parse_audio_mime_type(mime_type)
|
23 |
+
bits_per_sample = parameters["bits_per_sample"]
|
24 |
+
sample_rate = parameters["rate"]
|
25 |
+
num_channels = 1
|
26 |
+
data_size = len(audio_data)
|
27 |
+
bytes_per_sample = bits_per_sample // 8
|
28 |
+
block_align = num_channels * bytes_per_sample
|
29 |
+
byte_rate = sample_rate * block_align
|
30 |
+
chunk_size = 36 + data_size
|
31 |
+
|
32 |
+
header = struct.pack(
|
33 |
+
"<4sI4s4sIHHIIHH4sI",
|
34 |
+
b"RIFF", # ChunkID
|
35 |
+
chunk_size, # ChunkSize (total file size - 8 bytes)
|
36 |
+
b"WAVE", # Format
|
37 |
+
b"fmt ", # Subchunk1ID
|
38 |
+
16, # Subchunk1Size (16 for PCM)
|
39 |
+
1, # AudioFormat (1 for PCM)
|
40 |
+
num_channels, # NumChannels
|
41 |
+
sample_rate, # SampleRate
|
42 |
+
byte_rate, # ByteRate
|
43 |
+
block_align, # BlockAlign
|
44 |
+
bits_per_sample, # BitsPerSample
|
45 |
+
b"data", # Subchunk2ID
|
46 |
+
data_size # Subchunk2Size (size of audio data)
|
47 |
+
)
|
48 |
+
return header + audio_data
|
49 |
+
|
50 |
+
|
51 |
+
def parse_audio_mime_type(mime_type: str) -> dict[str, int | None]:
|
52 |
+
"""Parses bits per sample and rate from an audio MIME type string."""
|
53 |
+
bits_per_sample = 16
|
54 |
+
rate = 24000
|
55 |
+
|
56 |
+
parts = mime_type.split(";")
|
57 |
+
for param in parts:
|
58 |
+
param = param.strip()
|
59 |
+
if param.lower().startswith("rate="):
|
60 |
+
try:
|
61 |
+
rate_str = param.split("=", 1)[1]
|
62 |
+
rate = int(rate_str)
|
63 |
+
except (ValueError, IndexError):
|
64 |
+
pass
|
65 |
+
elif param.startswith("audio/L"):
|
66 |
+
try:
|
67 |
+
bits_per_sample = int(param.split("L", 1)[1])
|
68 |
+
except (ValueError, IndexError):
|
69 |
+
pass
|
70 |
+
|
71 |
+
return {"bits_per_sample": bits_per_sample, "rate": rate}
|
72 |
+
|
73 |
+
|
74 |
+
def fetch_web_content(url, progress=gr.Progress()):
|
75 |
+
"""Fetch and analyze web content using Gemini with tools."""
|
76 |
+
progress(0.1, desc="Initializing Gemini client...")
|
77 |
+
|
78 |
+
api_key = os.environ.get("GEMINI_API_KEY")
|
79 |
+
if not api_key:
|
80 |
+
raise ValueError("GEMINI_API_KEY environment variable is not set")
|
81 |
+
|
82 |
+
client = genai.Client(api_key=api_key)
|
83 |
+
|
84 |
+
progress(0.2, desc="Fetching web content...")
|
85 |
+
|
86 |
+
model = "gemini-2.5-flash-preview-04-17"
|
87 |
+
contents = [
|
88 |
+
types.Content(
|
89 |
+
role="user",
|
90 |
+
parts=[
|
91 |
+
types.Part.from_text(text=f"""Please analyze the content from this URL: {url}
|
92 |
+
|
93 |
+
Create a comprehensive summary that would be suitable for a podcast discussion between two hosts.
|
94 |
+
Focus on the key points, interesting aspects, and discussion-worthy topics.
|
95 |
+
|
96 |
+
Format your response as a natural conversation between two podcast hosts discussing the content."""),
|
97 |
+
],
|
98 |
+
),
|
99 |
+
]
|
100 |
+
|
101 |
+
tools = [
|
102 |
+
types.Tool(url_context=types.UrlContext()),
|
103 |
+
types.Tool(google_search=types.GoogleSearch()),
|
104 |
+
]
|
105 |
+
|
106 |
+
generate_content_config = types.GenerateContentConfig(
|
107 |
+
tools=tools,
|
108 |
+
response_mime_type="text/plain",
|
109 |
+
)
|
110 |
+
|
111 |
+
progress(0.4, desc="Analyzing content with AI...")
|
112 |
+
|
113 |
+
content_text = ""
|
114 |
+
for chunk in client.models.generate_content_stream(
|
115 |
+
model=model,
|
116 |
+
contents=contents,
|
117 |
+
config=generate_content_config,
|
118 |
):
|
119 |
+
content_text += chunk.text
|
120 |
+
|
121 |
+
progress(0.6, desc="Content analysis complete!")
|
122 |
+
return content_text
|
123 |
+
|
124 |
+
|
125 |
+
def generate_podcast_from_content(content_text, speaker1_name="Anna Chope", speaker2_name="Adam Chan", progress=gr.Progress()):
|
126 |
+
"""Generate audio podcast from text content."""
|
127 |
+
progress(0.7, desc="Generating podcast audio...")
|
128 |
+
|
129 |
+
api_key = os.environ.get("GEMINI_API_KEY")
|
130 |
+
if not api_key:
|
131 |
+
raise ValueError("GEMINI_API_KEY environment variable is not set")
|
132 |
+
|
133 |
+
client = genai.Client(api_key=api_key)
|
134 |
+
|
135 |
+
model = "gemini-2.5-flash-preview-tts"
|
136 |
+
|
137 |
+
podcast_prompt = f"""Please read aloud the following content in a natural podcast interview style with two distinct speakers.
|
138 |
+
Make it sound conversational and engaging:
|
139 |
+
|
140 |
+
{content_text}
|
141 |
+
|
142 |
+
If the content is not already in dialogue format, please convert it into a natural conversation between two podcast hosts Speaker 1 {speaker1_name} and Speaker 2 {speaker2_name} discussing the topic. They should introduce themselves at the beginning."""
|
143 |
+
|
144 |
+
contents = [
|
145 |
+
types.Content(
|
146 |
+
role="user",
|
147 |
+
parts=[
|
148 |
+
types.Part.from_text(text=podcast_prompt),
|
149 |
+
],
|
150 |
+
),
|
151 |
+
]
|
152 |
+
|
153 |
+
generate_content_config = types.GenerateContentConfig(
|
154 |
+
temperature=1,
|
155 |
+
response_modalities=[
|
156 |
+
"audio",
|
157 |
+
],
|
158 |
+
speech_config=types.SpeechConfig(
|
159 |
+
multi_speaker_voice_config=types.MultiSpeakerVoiceConfig(
|
160 |
+
speaker_voice_configs=[
|
161 |
+
types.SpeakerVoiceConfig(
|
162 |
+
speaker="Speaker 1",
|
163 |
+
voice_config=types.VoiceConfig(
|
164 |
+
prebuilt_voice_config=types.PrebuiltVoiceConfig(
|
165 |
+
voice_name="Zephyr"
|
166 |
+
)
|
167 |
+
),
|
168 |
+
),
|
169 |
+
types.SpeakerVoiceConfig(
|
170 |
+
speaker="Speaker 2",
|
171 |
+
voice_config=types.VoiceConfig(
|
172 |
+
prebuilt_voice_config=types.PrebuiltVoiceConfig(
|
173 |
+
voice_name="Puck"
|
174 |
+
)
|
175 |
+
),
|
176 |
+
),
|
177 |
+
]
|
178 |
+
),
|
179 |
),
|
180 |
+
)
|
181 |
+
|
182 |
+
progress(0.8, desc="Converting to audio...")
|
183 |
+
|
184 |
+
# Create temporary file
|
185 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
186 |
+
temp_file.close()
|
187 |
+
|
188 |
+
audio_chunks = []
|
189 |
+
|
190 |
+
for chunk in client.models.generate_content_stream(
|
191 |
+
model=model,
|
192 |
+
contents=contents,
|
193 |
+
config=generate_content_config,
|
194 |
+
):
|
195 |
+
if (
|
196 |
+
chunk.candidates is None
|
197 |
+
or chunk.candidates[0].content is None
|
198 |
+
or chunk.candidates[0].content.parts is None
|
199 |
+
):
|
200 |
+
continue
|
201 |
+
|
202 |
+
if (chunk.candidates[0].content.parts[0].inline_data and
|
203 |
+
chunk.candidates[0].content.parts[0].inline_data.data):
|
204 |
+
|
205 |
+
inline_data = chunk.candidates[0].content.parts[0].inline_data
|
206 |
+
data_buffer = inline_data.data
|
207 |
+
|
208 |
+
# Convert to WAV if needed
|
209 |
+
if inline_data.mime_type != "audio/wav":
|
210 |
+
data_buffer = convert_to_wav(inline_data.data, inline_data.mime_type)
|
211 |
+
|
212 |
+
audio_chunks.append(data_buffer)
|
213 |
+
|
214 |
+
# Combine all audio chunks
|
215 |
+
if audio_chunks:
|
216 |
+
# For simplicity, just use the first chunk (you might want to concatenate them)
|
217 |
+
final_audio = audio_chunks[0]
|
218 |
+
save_binary_file(temp_file.name, final_audio)
|
219 |
+
progress(1.0, desc="Podcast generated successfully!")
|
220 |
+
return temp_file.name
|
221 |
+
else:
|
222 |
+
raise ValueError("No audio data generated")
|
223 |
+
|
224 |
+
|
225 |
+
def generate_web_podcast(url, speaker1_name, speaker2_name, progress=gr.Progress()):
|
226 |
+
"""Main function to fetch web content and generate podcast."""
|
227 |
+
try:
|
228 |
+
progress(0.0, desc="Starting podcast generation...")
|
229 |
+
|
230 |
+
# Validate URL
|
231 |
+
if not url or not url.startswith(('http://', 'https://')):
|
232 |
+
raise ValueError("Please enter a valid URL starting with http:// or https://")
|
233 |
+
|
234 |
+
# Step 1: Fetch and analyze web content
|
235 |
+
content_text = fetch_web_content(url, progress)
|
236 |
+
|
237 |
+
# Step 2: Generate podcast from the content
|
238 |
+
audio_file = generate_podcast_from_content(content_text, speaker1_name, speaker2_name, progress)
|
239 |
+
|
240 |
+
return audio_file, "β
Podcast generated successfully!", content_text
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
error_msg = f"β Error generating podcast: {str(e)}"
|
244 |
+
return None, error_msg, ""
|
245 |
+
|
246 |
+
|
247 |
+
# Create Gradio interface
|
248 |
+
def create_interface():
|
249 |
+
with gr.Blocks(title="ποΈ Web-to-Podcast Generator", theme=gr.themes.Soft()) as demo:
|
250 |
+
gr.Markdown("""
|
251 |
+
# ποΈ Web-to-Podcast Generator
|
252 |
+
|
253 |
+
Transform any website into an engaging podcast conversation between two AI hosts!
|
254 |
+
|
255 |
+
Simply paste a URL and let AI create a natural dialogue discussing the content.
|
256 |
+
""")
|
257 |
+
|
258 |
+
with gr.Row():
|
259 |
+
with gr.Column(scale=2):
|
260 |
+
url_input = gr.Textbox(
|
261 |
+
label="Website URL",
|
262 |
+
placeholder="https://example.com",
|
263 |
+
info="Enter the URL of the website you want to convert to a podcast"
|
264 |
+
)
|
265 |
+
|
266 |
+
with gr.Row():
|
267 |
+
speaker1_input = gr.Textbox(
|
268 |
+
label="Host 1 Name",
|
269 |
+
value="Anna Chope",
|
270 |
+
info="Name of the first podcast host"
|
271 |
+
)
|
272 |
+
speaker2_input = gr.Textbox(
|
273 |
+
label="Host 2 Name",
|
274 |
+
value="Adam Chan",
|
275 |
+
info="Name of the second podcast host"
|
276 |
+
)
|
277 |
+
|
278 |
+
generate_btn = gr.Button("ποΈ Generate Podcast", variant="primary", size="lg")
|
279 |
+
|
280 |
+
with gr.Column(scale=1):
|
281 |
+
gr.Markdown("""
|
282 |
+
### Instructions:
|
283 |
+
1. Enter a website URL
|
284 |
+
2. Customize host names (optional)
|
285 |
+
3. Click "Generate Podcast"
|
286 |
+
4. Wait for the AI to analyze content and create audio
|
287 |
+
5. Download your podcast!
|
288 |
+
|
289 |
+
### Examples:
|
290 |
+
- News articles
|
291 |
+
- Blog posts
|
292 |
+
- Product pages
|
293 |
+
- Documentation
|
294 |
+
- Research papers
|
295 |
+
""")
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
299 |
+
|
300 |
+
with gr.Row():
|
301 |
+
audio_output = gr.Audio(label="Generated Podcast", type="filepath")
|
302 |
+
|
303 |
+
with gr.Accordion("π Generated Script Preview", open=False):
|
304 |
+
script_output = gr.Textbox(
|
305 |
+
label="Podcast Script",
|
306 |
+
lines=10,
|
307 |
+
interactive=False,
|
308 |
+
info="Preview of the conversation script generated from the website content"
|
309 |
+
)
|
310 |
+
|
311 |
+
# Event handlers
|
312 |
+
generate_btn.click(
|
313 |
+
fn=generate_web_podcast,
|
314 |
+
inputs=[url_input, speaker1_input, speaker2_input],
|
315 |
+
outputs=[audio_output, status_output, script_output],
|
316 |
+
show_progress=True
|
317 |
+
)
|
318 |
+
|
319 |
+
# Examples
|
320 |
+
gr.Examples(
|
321 |
+
examples=[
|
322 |
+
["https://github.com/weaviate/weaviate", "Anna", "Adam"],
|
323 |
+
["https://huggingface.co/blog", "Sarah", "Mike"],
|
324 |
+
["https://openai.com/blog", "Emma", "John"],
|
325 |
+
],
|
326 |
+
inputs=[url_input, speaker1_input, speaker2_input],
|
327 |
+
)
|
328 |
+
|
329 |
+
gr.Markdown("""
|
330 |
+
---
|
331 |
+
**Note:** This app requires a Gemini API key to function. Make sure the `GEMINI_API_KEY` environment variable is set.
|
332 |
+
|
333 |
+
The generated podcast will feature two AI voices having a natural conversation about the website content.
|
334 |
+
""")
|
335 |
+
|
336 |
+
return demo
|
337 |
|
338 |
|
339 |
if __name__ == "__main__":
|
340 |
+
demo = create_interface()
|
341 |
+
demo.launch()
|