File size: 5,750 Bytes
7b4f310
 
 
69db8f3
7b4f310
606bdc0
69db8f3
8cfd312
69db8f3
8cfd312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606bdc0
8cfd312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69db8f3
 
8cfd312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69db8f3
8cfd312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Nikhil Kunjoor
"""
import gradio as gr
import numpy as np
from PIL import Image, ImageFilter
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation, AutoImageProcessor, AutoModelForDepthEstimation

device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.set_float32_matmul_precision('high')

rmbg_model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-2.0", trust_remote_code=True).to(device).eval()
depth_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf").to(device)

def run_rmbg(image, threshold=0.5):
    image_size = (1024, 1024)
    transform_image = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    input_images = transform_image(image).unsqueeze(0).to(device)
    with torch.no_grad():
        preds = rmbg_model(input_images)
        mask_logits = preds[-1]
    mask_prob = mask_logits.sigmoid().cpu()[0].squeeze()
    pred_pil = transforms.ToPILImage()(mask_prob)
    mask_pil = pred_pil.resize(image.size, resample=Image.BILINEAR)
    mask_np = np.array(mask_pil, dtype=np.uint8) / 255.0
    binary_mask = (mask_np > threshold).astype(np.uint8)
    return binary_mask

def run_depth_estimation(image, target_size=(512, 512)):
    image_resized = image.resize(target_size, resample=Image.BILINEAR)
    inputs = depth_processor(images=image_resized, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = depth_model(**inputs)
        predicted_depth = outputs.predicted_depth
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],
        mode="bicubic",
        align_corners=False,
    )
    depth_map = prediction.squeeze().cpu().numpy()
    depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
    return 1 - depth_map

def apply_gaussian_blur(image, mask, sigma):
    blurred = image.filter(ImageFilter.GaussianBlur(radius=sigma))
    return Image.composite(image, blurred, Image.fromarray((mask * 255).astype(np.uint8)))

def apply_lens_blur(image, depth_map, max_radius, foreground_percentile):
    foreground_threshold = np.percentile(depth_map.flatten(), foreground_percentile)
    output = np.array(image)
    for radius in np.linspace(0, max_radius, 10):
        mask = (depth_map > foreground_threshold + radius / max_radius * (depth_map.max() - foreground_threshold))
        blurred = image.filter(ImageFilter.GaussianBlur(radius=radius))
        output[mask] = np.array(blurred)[mask]
    return Image.fromarray(output)

def process_image(image, blur_type, sigma, max_radius, foreground_percentile, mask_threshold):
    if image is None:
        return None, "Please upload an image."

    try:
        image = Image.fromarray(image).convert("RGB")
    except Exception as e:
        return None, f"Error processing image: {str(e)}"

    max_size = (1024, 1024)
    if image.size[0] > max_size[0] or image.size[1] > max_size[1]:
        image.thumbnail(max_size, Image.Resampling.LANCZOS)

    try:
        if blur_type == "Gaussian Blur":
            mask = run_rmbg(image, threshold=mask_threshold)
            output_image = apply_gaussian_blur(image, mask, sigma)
        else:  # Lens Blur
            depth_map = run_depth_estimation(image)
            output_image = apply_lens_blur(image, depth_map, max_radius, foreground_percentile)
    except Exception as e:
        return None, f"Error applying blur: {str(e)}"

    # Generate debug info
    debug_info = f"Blur Type: {blur_type}\n"
    if blur_type == "Gaussian Blur":
        debug_info += f"Sigma: {sigma}\nMask Threshold: {mask_threshold}"
    else:
        debug_info += f"Max Radius: {max_radius}\nForeground Percentile: {foreground_percentile}"

    return output_image, debug_info

with gr.Blocks() as demo:
    gr.Markdown("# Image Blur Effects with Gaussian and Lens Blur")
    with gr.Row():
        image_input = gr.Image(label="Upload Image", type="numpy")
        with gr.Column():
            blur_type = gr.Radio(choices=["Gaussian Blur", "Lens Blur"], label="Blur Type", value="Gaussian Blur")
            sigma = gr.Slider(minimum=0.1, maximum=50, step=0.1, value=15, label="Gaussian Blur Sigma")
            max_radius = gr.Slider(minimum=1, maximum=100, step=1, value=15, label="Max Lens Blur Radius")
            foreground_percentile = gr.Slider(minimum=1, maximum=99, step=1, value=30, label="Foreground Percentile")
            mask_threshold = gr.Slider(minimum=0.1, maximum=0.9, step=0.1, value=0.5, label="Mask Threshold")

    process_button = gr.Button("Apply Blur")
    with gr.Row():
        output_image = gr.Image(label="Output Image")
        debug_info = gr.Textbox(label="Debug Info", lines=4)

    def update_visibility(blur_type):
        if blur_type == "Gaussian Blur":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
        else:  # Lens Blur
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)

    blur_type.change(
        fn=update_visibility,
        inputs=blur_type,
        outputs=[sigma, max_radius, foreground_percentile, mask_threshold]
    )

    process_button.click(
        fn=process_image,
        inputs=[image_input, blur_type, sigma, max_radius, foreground_percentile, mask_threshold],
        outputs=[output_image, debug_info]
    )

demo.launch()