nhanne24 commited on
Commit
ad370d3
·
verified ·
1 Parent(s): eb2cba7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -53
app.py CHANGED
@@ -1,54 +1,54 @@
1
- from flask import Flask, request, jsonify
2
- from classify_model import model, tokenizer
3
- import torch
4
- import numpy as np
5
- import os
6
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
7
- import gdown
8
- from underthesea import word_tokenize
9
-
10
-
11
- if not os.path.exists("save_weights.pt"):
12
- file_id = "1JeQ100QELbCCjCozF5SsHT1ca08Vvfuw"
13
- url = f"https://drive.google.com/uc?id={file_id}"
14
- print("Downloading save_weights.pt from Google Drive...")
15
- gdown.download(url, "save_weights.pt", quiet=False)
16
- if not os.path.exists("save_weights.pt"):
17
- raise FileNotFoundError("Failed to download save_weights.pt")
18
-
19
- model.load_state_dict(torch.load("save_weights.pt"))
20
- model.eval()
21
-
22
- app = Flask(__name__)
23
-
24
- def predict_toxic(sentence):
25
- # tokens = rdrsegmenter.tokenize(sentence)
26
- # statement = ""
27
- # for token in tokens:
28
- # statement += " ".join(token)
29
- # sentence = statement
30
- sentence = word_tokenize(sentence, format="text")
31
- sequence = tokenizer.encode(sentence)
32
- while len(sequence) == 20:
33
- sequence.insert(0, 0)
34
- padded = torch.tensor([sequence])
35
- with torch.no_grad():
36
- preds = model(padded)
37
- preds = np.argmax(preds.cpu().numpy(), axis=1)
38
- return preds[0]
39
-
40
-
41
- @app.route('/predict', methods=['POST'])
42
- def predict():
43
- data = request.json
44
- sentence = data.get('sentence', '')
45
- if not sentence:
46
- return jsonify({'error': 'No sentence provided'}), 400
47
- result = predict_toxic(sentence)
48
- print("Dự đoán:", result, type(result))
49
- return jsonify({'toxic': int(result)})
50
-
51
- if __name__ == "__main__":
52
- port = int(os.environ.get("PORT", 5000))
53
- app.run(host="0.0.0.0", port=port)
54
  # app.run(host="0.0.0.0", port=5001)
 
1
+ from flask import Flask, request, jsonify
2
+ from classify_model import model, tokenizer
3
+ import torch
4
+ import numpy as np
5
+ import os
6
+ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
7
+ import gdown
8
+ from underthesea import word_tokenize
9
+
10
+
11
+ if not os.path.exists("save_weights.pt"):
12
+ file_id = "1JeQ100QELbCCjCozF5SsHT1ca08Vvfuw"
13
+ url = f"https://drive.google.com/uc?id={file_id}"
14
+ print("Downloading save_weights.pt from Google Drive...")
15
+ gdown.download(url, "save_weights.pt", quiet=False)
16
+ if not os.path.exists("save_weights.pt"):
17
+ raise FileNotFoundError("Failed to download save_weights.pt")
18
+
19
+ model.load_state_dict(torch.load("save_weights.pt"))
20
+ model.eval()
21
+
22
+ app = Flask(__name__)
23
+
24
+ def predict_toxic(sentence):
25
+ # tokens = rdrsegmenter.tokenize(sentence)
26
+ # statement = ""
27
+ # for token in tokens:
28
+ # statement += " ".join(token)
29
+ # sentence = statement
30
+ sentence = word_tokenize(sentence, format="text")
31
+ sequence = tokenizer.encode(sentence)
32
+ while len(sequence) == 20:
33
+ sequence.insert(0, 0)
34
+ padded = torch.tensor([sequence])
35
+ with torch.no_grad():
36
+ preds = model(padded)
37
+ preds = np.argmax(preds.cpu().numpy(), axis=1)
38
+ return preds[0]
39
+
40
+
41
+ @app.route('/predict', methods=['POST'])
42
+ def predict():
43
+ data = request.json
44
+ sentence = data.get('sentence', '')
45
+ if not sentence:
46
+ return jsonify({'error': 'No sentence provided'}), 400
47
+ result = predict_toxic(sentence)
48
+ print("Dự đoán:", result, type(result))
49
+ return jsonify({'toxic': int(result)})
50
+
51
+ if __name__ == "__main__":
52
+ port = int(os.environ.get("PORT", 5001))
53
+ app.run(host="0.0.0.0", port=port)
54
  # app.run(host="0.0.0.0", port=5001)