Spaces:
Running
Running
File size: 6,787 Bytes
a560dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from torch.optim import optimizer
import transformers
from transformers import AutoModel, AutoTokenizer
from keras.preprocessing.sequence import pad_sequences
import json
#from vncorenlp import VnCoreNLP
from sklearn.utils import shuffle
from torch.optim import AdamW
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
from underthesea import word_tokenize
#Đọc dữ liệu
def get_data(all_path):
sentences=[]
labels=[]
for i in all_path:
try:
with open(i, "r", encoding='utf-8') as f:
datastore = json.load(f)
except FileNotFoundError:
print(f"Error: File {i} not found")
continue
except json.JSONDecodeError:
print(f"Error: File {i} contains invalid JSON")
continue
for item in datastore:
sentences.append(item["sentences"])
labels.append(item["toxic"])
return sentences, labels
#Tách từ tiếng việt
# rdrsegmenter=VnCoreNLP("vncorenlp/VnCoreNLP-1.1.1.jar", annotators="wseg", max_heap_size='-Xmx500m')
# def sentences_segment(sentences):
# for i in range(len(sentences)):
# tokens=rdrsegmenter.tokenize(sentences[i])
# statement=""
# for token in tokens:
# statement+=" ".join(token)
# sentences[i]=statement
def sentences_segment(sentences):
for i in range(len(sentences)):
# word_tokenize trả về chuỗi các từ cách nhau bằng dấu space
sentences[i] = word_tokenize(sentences[i], format="text")
#Mã hóa các câu thành Token ID và pad chuỗi về độ dài maxlen
phobert=AutoModel.from_pretrained('vinai/phobert-base')
tokenizer=AutoTokenizer.from_pretrained('vinai/phobert-base')
def shuffle_and_tokenize(sentences,labels,maxlen):
sentences,labels=shuffle(sentences,labels)
sequences=[tokenizer.encode(i) for i in sentences]
labels=[int(i) for i in labels]
padded=pad_sequences(sequences, maxlen=maxlen, padding="pre")
return padded, labels
def check_maxlen(sentences):
sentences_len=[len(i.split()) for i in sentences]
return max(sentences_len)
#Chia dữ liệu huấn luyện/val/test
def split_data(padded, labels):
padded=torch.tensor(padded)
labels=torch.tensor(labels)
X_train,X_,y_train,y_=train_test_split(padded, labels,random_state=2018, train_size=0.8, stratify=labels)
X_val,X_test, y_val, y_test=train_test_split(X_, y_, random_state=2018, train_size=0.5, stratify=y_)
return X_train,X_val,X_test, y_train,y_val, y_test
#Tạo DataLoader
def Data_Loader(X_train,X_val,y_train,y_val):
train_data=TensorDataset(X_train,y_train)
train_sampler=RandomSampler(train_data)
train_dataloader=DataLoader(train_data, sampler=train_sampler,batch_size=2)
val_data=TensorDataset(X_val,y_val)
val_sampler=RandomSampler(val_data)
val_dataloader=DataLoader(val_data, sampler=val_sampler,batch_size=2)
return train_dataloader, val_dataloader
# Chuẩn bị dữ liệu (chỉ chạy 1 lần ở train_model.py)
sentences,labels=get_data(['toxic_dataset.json','normal_dataset.json'])
sentences_segment(sentences)
padded,labels=shuffle_and_tokenize(sentences,labels,check_maxlen(sentences))
X_train,X_val,X_test, y_train,y_val, y_test=split_data(padded, labels)
train_dataloader, val_dataloader=Data_Loader(X_train,X_val,y_train,y_val)
# Freeze PhoBERT để không train lại
for param in phobert.parameters():
param.requires_grad=False
class classify(nn.Module):
def __init__(self, phobert, number_of_category):
super(classify,self).__init__()
self.phobert=phobert
self.relu=nn.ReLU()
self.dropout=nn.Dropout(0.1)
self.first_function=nn.Linear(768, 512)
self.second_function=nn.Linear(512, 32)
self.third_function=nn.Linear(32,number_of_category)
self.softmax=nn.LogSoftmax(dim=1)
def forward(self, input):
x=self.phobert(input)
x=self.first_function(x[1])
x=self.relu(x)
x=self.dropout(x)
x=self.second_function(x)
x=self.relu(x)
x=self.third_function(x)
x=self.softmax(x)
return x
cross_entropy=nn.NLLLoss()
model=classify(phobert,2)
optimizer=AdamW(model.parameters(),lr=1e-5)
#Train / Evaluate
def train():
model.train()
total_loss=0
total_preds=[]
for step , batch in enumerate(train_dataloader):
if step%50==0 and step!=0:
print("BATCH {} of {}".format(step, len(train_dataloader)))
input,labels=batch
model.zero_grad()
preds=model(input)
loss=cross_entropy(preds, labels)
total_loss+=loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
preds=preds.detach().cpu().numpy()
total_preds.append(preds)
avg_loss=total_loss/len(train_dataloader)
total_preds=np.concatenate(total_preds,axis=0)
return avg_loss, total_preds
def evaluate():
model.eval()
total_loss=0
total_preds=[]
for step, batch in enumerate(val_dataloader):
if step%50==0 and step!=0:
print("BATCH {} of {}".format(step, len(val_dataloader)))
input,labels=batch
with torch.no_grad():
preds=model(input)
loss=cross_entropy(preds, labels)
total_loss+=loss.item()
preds=preds.detach().cpu().numpy()
total_preds.append(preds)
avg_loss=total_loss/len(val_dataloader)
total_preds=np.concatenate(total_preds,axis=0)
return avg_loss, total_preds
#Huấn luyện toàn bộ
def run(epochs):
best_valid_loss=float("inf")
train_losses=[]
valid_losses=[]
for epoch in range(epochs):
print("EPOCH {}/{}".format(epoch+1, epochs))
train_loss,_ =train()
valid_loss,_ =evaluate()
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(),"save_weights.pt")
train_losses.append(train_loss)
valid_losses.append(valid_loss)
print(f"Train Loss: {train_loss}, Val Loss: {valid_loss}")
#print(f"Train Loss: {train_loss:.4f}, Val Loss: {valid_loss:.4f}")
# print(train_loss)
# print(valid_loss)
if __name__ == "__main__":
print("Module classify_model.py đã được load. Không chạy trực tiếp.")
|