File size: 6,787 Bytes
a560dfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from torch.optim import optimizer
import transformers
from transformers import AutoModel, AutoTokenizer
from keras.preprocessing.sequence import pad_sequences
import json
#from vncorenlp import VnCoreNLP
from sklearn.utils import shuffle
from torch.optim import AdamW
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
from underthesea import word_tokenize

#Đọc dữ liệu
def get_data(all_path):
    sentences=[]
    labels=[]
    for i in all_path:
        try:
            with open(i, "r", encoding='utf-8') as f:
                datastore = json.load(f)
        except FileNotFoundError:
            print(f"Error: File {i} not found")
            continue
        except json.JSONDecodeError:
            print(f"Error: File {i} contains invalid JSON")
            continue
        for item in datastore:
            sentences.append(item["sentences"])
            labels.append(item["toxic"])
    return sentences, labels


#Tách từ tiếng việt
# rdrsegmenter=VnCoreNLP("vncorenlp/VnCoreNLP-1.1.1.jar", annotators="wseg", max_heap_size='-Xmx500m')
# def sentences_segment(sentences):
#     for i in range(len(sentences)):
#         tokens=rdrsegmenter.tokenize(sentences[i])
#         statement=""
#         for token in tokens:
#             statement+=" ".join(token)
#         sentences[i]=statement
def sentences_segment(sentences):
    for i in range(len(sentences)):
        # word_tokenize trả về chuỗi các từ cách nhau bằng dấu space
        sentences[i] = word_tokenize(sentences[i], format="text")

#Mã hóa các câu thành Token ID và pad chuỗi về độ dài maxlen
phobert=AutoModel.from_pretrained('vinai/phobert-base')
tokenizer=AutoTokenizer.from_pretrained('vinai/phobert-base')
def shuffle_and_tokenize(sentences,labels,maxlen):
    sentences,labels=shuffle(sentences,labels)
    sequences=[tokenizer.encode(i) for i in sentences]
    labels=[int(i) for i in labels]
    padded=pad_sequences(sequences, maxlen=maxlen, padding="pre")
    return padded, labels

def check_maxlen(sentences):
    sentences_len=[len(i.split()) for i in sentences]
    return max(sentences_len)


#Chia dữ liệu huấn luyện/val/test
def split_data(padded, labels):
    padded=torch.tensor(padded)
    labels=torch.tensor(labels)
    X_train,X_,y_train,y_=train_test_split(padded, labels,random_state=2018, train_size=0.8, stratify=labels)
    X_val,X_test, y_val, y_test=train_test_split(X_, y_, random_state=2018, train_size=0.5, stratify=y_)
    return X_train,X_val,X_test, y_train,y_val, y_test


#Tạo DataLoader
def Data_Loader(X_train,X_val,y_train,y_val):
    train_data=TensorDataset(X_train,y_train)
    train_sampler=RandomSampler(train_data)
    train_dataloader=DataLoader(train_data, sampler=train_sampler,batch_size=2)
    val_data=TensorDataset(X_val,y_val)
    val_sampler=RandomSampler(val_data)
    val_dataloader=DataLoader(val_data, sampler=val_sampler,batch_size=2)
    return train_dataloader, val_dataloader

# Chuẩn bị dữ liệu (chỉ chạy 1 lần ở train_model.py)
sentences,labels=get_data(['toxic_dataset.json','normal_dataset.json'])
sentences_segment(sentences)
padded,labels=shuffle_and_tokenize(sentences,labels,check_maxlen(sentences))
X_train,X_val,X_test, y_train,y_val, y_test=split_data(padded, labels)
train_dataloader, val_dataloader=Data_Loader(X_train,X_val,y_train,y_val)

# Freeze PhoBERT để không train lại
for param in phobert.parameters():
    param.requires_grad=False

class classify(nn.Module):
    def __init__(self, phobert, number_of_category):
        super(classify,self).__init__()
        self.phobert=phobert
        self.relu=nn.ReLU()
        self.dropout=nn.Dropout(0.1)
        self.first_function=nn.Linear(768, 512)
        self.second_function=nn.Linear(512, 32)
        self.third_function=nn.Linear(32,number_of_category)
        self.softmax=nn.LogSoftmax(dim=1)

    def forward(self, input):
        x=self.phobert(input)
        x=self.first_function(x[1])
        x=self.relu(x)
        x=self.dropout(x)
        x=self.second_function(x)
        x=self.relu(x)
        x=self.third_function(x)
        x=self.softmax(x)
        return x

cross_entropy=nn.NLLLoss()
model=classify(phobert,2)
optimizer=AdamW(model.parameters(),lr=1e-5)

#Train / Evaluate
def train():
    model.train()
    total_loss=0
    total_preds=[]
    for step , batch in enumerate(train_dataloader):
        if step%50==0 and step!=0:
            print("BATCH {} of {}".format(step, len(train_dataloader)))
        
        input,labels=batch
        model.zero_grad()
        preds=model(input)
        loss=cross_entropy(preds, labels)
        total_loss+=loss.item()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()
        preds=preds.detach().cpu().numpy()
        total_preds.append(preds)
    avg_loss=total_loss/len(train_dataloader)
    total_preds=np.concatenate(total_preds,axis=0)
    return avg_loss, total_preds

def evaluate():
    model.eval()
    total_loss=0
    total_preds=[]
    for step, batch in enumerate(val_dataloader):
        if step%50==0 and step!=0:
            print("BATCH {} of {}".format(step, len(val_dataloader)))
        input,labels=batch
        with torch.no_grad():
            preds=model(input)
            loss=cross_entropy(preds, labels)
            total_loss+=loss.item()
            preds=preds.detach().cpu().numpy()
            total_preds.append(preds)
    avg_loss=total_loss/len(val_dataloader)
    total_preds=np.concatenate(total_preds,axis=0)
    return avg_loss, total_preds


#Huấn luyện toàn bộ
def run(epochs):
    best_valid_loss=float("inf")
    train_losses=[]
    valid_losses=[]
    for epoch in range(epochs):
        print("EPOCH {}/{}".format(epoch+1, epochs))
        train_loss,_ =train()
        valid_loss,_ =evaluate()
        if valid_loss < best_valid_loss:
            best_valid_loss = valid_loss
            torch.save(model.state_dict(),"save_weights.pt")
        train_losses.append(train_loss)
        valid_losses.append(valid_loss)
        print(f"Train Loss: {train_loss}, Val Loss: {valid_loss}")
        #print(f"Train Loss: {train_loss:.4f}, Val Loss: {valid_loss:.4f}")
        # print(train_loss)
        # print(valid_loss)

if __name__ == "__main__":
    print("Module classify_model.py đã được load. Không chạy trực tiếp.")