Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,22 @@
|
|
1 |
-
#
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoModel, AutoTokenizer
|
5 |
import torchvision.transforms as T
|
6 |
from torchvision.transforms.functional import InterpolationMode
|
7 |
from PIL import Image
|
8 |
-
import base64
|
9 |
-
import io
|
10 |
import time
|
|
|
11 |
import traceback
|
12 |
|
13 |
# Setup
|
14 |
-
device = "cpu"
|
15 |
model = None
|
16 |
tokenizer = None
|
17 |
transform = None
|
18 |
|
19 |
def build_transform(input_size=448):
|
20 |
-
"""
|
21 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
22 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
23 |
|
@@ -29,20 +28,19 @@ def build_transform(input_size=448):
|
|
29 |
])
|
30 |
|
31 |
def load_model():
|
32 |
-
"""Load Vintern
|
33 |
global model, tokenizer, transform
|
34 |
try:
|
35 |
-
print("
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
# Load tokenizer
|
40 |
tokenizer = AutoTokenizer.from_pretrained(
|
41 |
model_name,
|
42 |
trust_remote_code=True
|
43 |
)
|
44 |
|
45 |
-
# Load model
|
46 |
model = AutoModel.from_pretrained(
|
47 |
model_name,
|
48 |
torch_dtype=torch.float32,
|
@@ -50,240 +48,119 @@ def load_model():
|
|
50 |
low_cpu_mem_usage=True
|
51 |
)
|
52 |
|
53 |
-
#
|
|
|
|
|
|
|
54 |
transform = build_transform()
|
55 |
|
56 |
-
print("✅
|
57 |
return True
|
58 |
|
59 |
except Exception as e:
|
60 |
-
print(f"❌ Error
|
61 |
traceback.print_exc()
|
62 |
return False
|
63 |
|
64 |
-
def
|
65 |
-
"""
|
66 |
-
try:
|
67 |
-
# Handle different input types
|
68 |
-
if image is None:
|
69 |
-
return None, "❌ Không có ảnh đầu vào"
|
70 |
-
|
71 |
-
# If it's a file path (string)
|
72 |
-
if isinstance(image, str):
|
73 |
-
if image.startswith('data:image'):
|
74 |
-
# Base64 image
|
75 |
-
image_data = image.split(',')[1]
|
76 |
-
image_bytes = base64.b64decode(image_data)
|
77 |
-
image = Image.open(io.BytesIO(image_bytes))
|
78 |
-
else:
|
79 |
-
# File path
|
80 |
-
image = Image.open(image)
|
81 |
-
|
82 |
-
# Ensure it's a PIL Image
|
83 |
-
if not hasattr(image, 'mode'):
|
84 |
-
return None, "❌ Định dạng ảnh không hợp lệ"
|
85 |
-
|
86 |
-
# Convert to RGB if needed
|
87 |
-
if image.mode != 'RGB':
|
88 |
-
image = image.convert('RGB')
|
89 |
-
|
90 |
-
return image, None
|
91 |
-
|
92 |
-
except Exception as e:
|
93 |
-
return None, f"❌ Lỗi xử lý ảnh: {str(e)}"
|
94 |
-
|
95 |
-
def analyze_image(image):
|
96 |
-
"""Analyze image with Vintern model"""
|
97 |
if model is None:
|
98 |
-
return "❌ Model chưa
|
99 |
|
100 |
try:
|
101 |
start_time = time.time()
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
return error
|
107 |
|
108 |
-
if
|
109 |
-
|
110 |
|
111 |
-
#
|
112 |
-
image_tensor = transform(
|
113 |
|
114 |
with torch.no_grad():
|
115 |
-
#
|
116 |
-
query = "Mô tả
|
117 |
|
118 |
try:
|
119 |
-
|
120 |
tokenizer,
|
121 |
image_tensor,
|
122 |
query,
|
123 |
generation_config=dict(
|
124 |
-
max_new_tokens=
|
125 |
-
do_sample=
|
126 |
temperature=0.7,
|
127 |
-
|
128 |
-
repetition_penalty=1.1
|
129 |
)
|
130 |
)
|
131 |
-
except
|
132 |
-
|
133 |
-
# Fallback to simple generation
|
134 |
inputs = tokenizer(query, return_tensors="pt").to(device)
|
135 |
outputs = model.generate(
|
136 |
**inputs,
|
137 |
-
max_new_tokens=
|
138 |
-
do_sample=
|
139 |
-
|
140 |
-
)
|
141 |
-
description = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
142 |
-
description = description.replace(query, "").strip()
|
143 |
-
|
144 |
-
# Get objects
|
145 |
-
try:
|
146 |
-
object_query = "Liệt kê các đối tượng chính trong ảnh:"
|
147 |
-
objects_text = model.chat(
|
148 |
-
tokenizer,
|
149 |
-
image_tensor,
|
150 |
-
object_query,
|
151 |
-
generation_config=dict(max_new_tokens=100, temperature=0.5)
|
152 |
)
|
153 |
-
|
154 |
-
|
155 |
-
except:
|
156 |
-
objects_str = "Không có"
|
157 |
|
158 |
processing_time = time.time() - start_time
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
{description}
|
163 |
-
|
164 |
-
**🔍 Đối tượng nhận diện:**
|
165 |
-
{objects_str}
|
166 |
|
167 |
-
**⚡ Thời gian
|
168 |
-
**🤖 Model:** Vintern-1B-
|
169 |
-
|
170 |
|
171 |
---
|
172 |
-
|
173 |
"""
|
174 |
|
175 |
except Exception as e:
|
176 |
-
|
177 |
-
print(error_msg)
|
178 |
-
traceback.print_exc()
|
179 |
-
return error_msg
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
try:
|
184 |
-
result = analyze_image(image_file)
|
185 |
-
# Return simple text for API consumption
|
186 |
-
return result
|
187 |
-
except Exception as e:
|
188 |
-
return f"Error: {str(e)}"
|
189 |
-
|
190 |
-
# Load model when starting
|
191 |
-
print("🚀 Initializing Vintern-1B-v3.5...")
|
192 |
model_loaded = load_model()
|
193 |
|
194 |
-
#
|
195 |
with gr.Blocks(
|
196 |
-
title="Vintern-1B
|
197 |
-
theme=gr.themes.
|
198 |
-
css="""
|
199 |
-
.gradio-container {
|
200 |
-
max-width: 1200px !important;
|
201 |
-
}
|
202 |
-
.upload-area {
|
203 |
-
min-height: 300px;
|
204 |
-
}
|
205 |
-
"""
|
206 |
) as demo:
|
207 |
|
208 |
-
gr.Markdown(""
|
209 |
-
# 🎥 Vintern-1B-v3.5 - Nhận Diện Ảnh Tiếng Việt
|
210 |
-
|
211 |
-
**Powered by Hugging Face Spaces** | Model chạy hoàn toàn trên cloud
|
212 |
-
""")
|
213 |
|
214 |
-
if
|
215 |
-
gr.Markdown("
|
216 |
-
else:
|
217 |
-
gr.Markdown("✅ **Model đã sẵn sàng!** Upload ảnh để bắt đầu nhận diện.")
|
218 |
|
219 |
with gr.Row():
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
with gr.Row():
|
228 |
-
analyze_btn = gr.Button("🔍 Phân Tích", variant="primary", scale=2)
|
229 |
-
clear_btn = gr.Button("🗑️ Xóa", variant="secondary", scale=1)
|
230 |
-
|
231 |
-
with gr.Column(scale=1):
|
232 |
-
result_output = gr.Textbox(
|
233 |
-
label="📋 Kết Quả Phân Tích",
|
234 |
-
lines=15,
|
235 |
-
max_lines=20,
|
236 |
-
show_copy_button=True
|
237 |
-
)
|
238 |
-
|
239 |
-
# Event handlers
|
240 |
-
analyze_btn.click(
|
241 |
-
fn=analyze_image,
|
242 |
-
inputs=image_input,
|
243 |
-
outputs=result_output
|
244 |
-
)
|
245 |
-
|
246 |
-
clear_btn.click(
|
247 |
-
fn=lambda: (None, ""),
|
248 |
-
outputs=[image_input, result_output]
|
249 |
-
)
|
250 |
|
251 |
-
# Auto-analyze on
|
252 |
image_input.change(
|
253 |
-
fn=
|
254 |
inputs=image_input,
|
255 |
outputs=result_output
|
256 |
)
|
257 |
|
258 |
gr.Markdown("""
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
2. **Kết quả tự động** hiển thị sau khi upload
|
265 |
-
3. **Hoặc nhấn "Phân Tích"** để chạy lại
|
266 |
-
|
267 |
-
### 🎥 Phân tích video real-time:
|
268 |
-
1. **Copy URL Space này:** `https://nguyentantoan-vintern-video-recognition.hf.space`
|
269 |
-
2. **Mở trangchu.html** đã được cung cấp
|
270 |
-
3. **Thay URL** trong code JavaScript
|
271 |
-
4. **Sử dụng camera** để phân tích real-time
|
272 |
-
|
273 |
-
### 🔗 API Usage:
|
274 |
-
```javascript
|
275 |
-
// POST to: https://nguyentantoan-vintern-video-recognition.hf.space/api/predict
|
276 |
-
// Body: FormData with image file
|
277 |
-
```
|
278 |
-
|
279 |
-
**⚠️ Lưu ý:** Việc phân tích có thể mất 10-30 giây do chạy trên CPU miễn phí của HF Spaces.
|
280 |
""")
|
281 |
|
282 |
-
# Launch the app
|
283 |
if __name__ == "__main__":
|
284 |
-
demo.launch(
|
285 |
-
server_name="0.0.0.0",
|
286 |
-
server_port=7860,
|
287 |
-
show_error=True,
|
288 |
-
quiet=False
|
289 |
-
)
|
|
|
1 |
+
# app_fast.py - Vintern-1B Fast Version
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoModel, AutoTokenizer
|
5 |
import torchvision.transforms as T
|
6 |
from torchvision.transforms.functional import InterpolationMode
|
7 |
from PIL import Image
|
|
|
|
|
8 |
import time
|
9 |
+
import json
|
10 |
import traceback
|
11 |
|
12 |
# Setup
|
13 |
+
device = "cpu"
|
14 |
model = None
|
15 |
tokenizer = None
|
16 |
transform = None
|
17 |
|
18 |
def build_transform(input_size=448):
|
19 |
+
"""Optimized transform"""
|
20 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
21 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
22 |
|
|
|
28 |
])
|
29 |
|
30 |
def load_model():
|
31 |
+
"""Load Vintern-1B (faster version)"""
|
32 |
global model, tokenizer, transform
|
33 |
try:
|
34 |
+
print("🚀 Loading Vintern-1B (Fast Version)...")
|
35 |
|
36 |
+
# Sử dụng model nhẹ hơn
|
37 |
+
model_name = "5CD-AI/Vintern-1B-v2" # Thay vì v3.5
|
38 |
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained(
|
40 |
model_name,
|
41 |
trust_remote_code=True
|
42 |
)
|
43 |
|
|
|
44 |
model = AutoModel.from_pretrained(
|
45 |
model_name,
|
46 |
torch_dtype=torch.float32,
|
|
|
48 |
low_cpu_mem_usage=True
|
49 |
)
|
50 |
|
51 |
+
# Optimize model for inference
|
52 |
+
model.eval()
|
53 |
+
model = torch.jit.optimize_for_inference(model)
|
54 |
+
|
55 |
transform = build_transform()
|
56 |
|
57 |
+
print("✅ Fast model loaded!")
|
58 |
return True
|
59 |
|
60 |
except Exception as e:
|
61 |
+
print(f"❌ Error: {e}")
|
62 |
traceback.print_exc()
|
63 |
return False
|
64 |
|
65 |
+
def fast_analyze(image):
|
66 |
+
"""Optimized analysis function"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
if model is None:
|
68 |
+
return "❌ Model chưa sẵn sàng"
|
69 |
|
70 |
try:
|
71 |
start_time = time.time()
|
72 |
|
73 |
+
# Quick image processing
|
74 |
+
if image is None:
|
75 |
+
return "❌ Không có ảnh"
|
|
|
76 |
|
77 |
+
if hasattr(image, 'mode') and image.mode != 'RGB':
|
78 |
+
image = image.convert('RGB')
|
79 |
|
80 |
+
# Fast transform
|
81 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
82 |
|
83 |
with torch.no_grad():
|
84 |
+
# Shorter, faster generation
|
85 |
+
query = "Mô tả ngắn gọn:"
|
86 |
|
87 |
try:
|
88 |
+
result = model.chat(
|
89 |
tokenizer,
|
90 |
image_tensor,
|
91 |
query,
|
92 |
generation_config=dict(
|
93 |
+
max_new_tokens=100, # Ngắn hơn → nhanh hơn
|
94 |
+
do_sample=False, # Greedy → nhanh hơn
|
95 |
temperature=0.7,
|
96 |
+
num_beams=1 # No beam search → nhanh hơn
|
|
|
97 |
)
|
98 |
)
|
99 |
+
except:
|
100 |
+
# Fallback nhanh
|
|
|
101 |
inputs = tokenizer(query, return_tensors="pt").to(device)
|
102 |
outputs = model.generate(
|
103 |
**inputs,
|
104 |
+
max_new_tokens=80,
|
105 |
+
do_sample=False,
|
106 |
+
num_beams=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
)
|
108 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
109 |
+
result = result.replace(query, "").strip()
|
|
|
|
|
110 |
|
111 |
processing_time = time.time() - start_time
|
112 |
|
113 |
+
return f"""**📝 Mô tả nhanh:**
|
114 |
+
{result}
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
**⚡ Thời gian:** {processing_time:.1f}s
|
117 |
+
**🤖 Model:** Vintern-1B-v2 (Optimized)
|
118 |
+
**💨 Tốc độ:** {1/processing_time:.1f} FPS
|
119 |
|
120 |
---
|
121 |
+
*Model được tối ưu cho tốc độ - phù hợp real-time*
|
122 |
"""
|
123 |
|
124 |
except Exception as e:
|
125 |
+
return f"❌ Lỗi: {str(e)}"
|
|
|
|
|
|
|
126 |
|
127 |
+
# Load model
|
128 |
+
print("🚀 Starting Fast Vintern Server...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
model_loaded = load_model()
|
130 |
|
131 |
+
# Lightweight Gradio interface
|
132 |
with gr.Blocks(
|
133 |
+
title="Vintern-1B Fast",
|
134 |
+
theme=gr.themes.Base(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
) as demo:
|
136 |
|
137 |
+
gr.Markdown("# ⚡ Vintern-1B Fast - Tốc Độ Cao")
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
if model_loaded:
|
140 |
+
gr.Markdown("✅ **Model sẵn sàng!** Tối ưu cho tốc độ và real-time.")
|
|
|
|
|
141 |
|
142 |
with gr.Row():
|
143 |
+
image_input = gr.Image(type="pil", label="📤 Upload Ảnh")
|
144 |
+
result_output = gr.Textbox(
|
145 |
+
label="📋 Kết Quả",
|
146 |
+
lines=8,
|
147 |
+
show_copy_button=True
|
148 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
# Auto-analyze on upload
|
151 |
image_input.change(
|
152 |
+
fn=fast_analyze,
|
153 |
inputs=image_input,
|
154 |
outputs=result_output
|
155 |
)
|
156 |
|
157 |
gr.Markdown("""
|
158 |
+
### ⚡ Tối ưu cho tốc độ:
|
159 |
+
- **Model nhẹ**: Vintern-1B-v2 (~1.5GB)
|
160 |
+
- **Fast generation**: Greedy decode, short output
|
161 |
+
- **Optimized**: JIT compilation, no beam search
|
162 |
+
- **Real-time ready**: ~2-5 giây/ảnh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
""")
|
164 |
|
|
|
165 |
if __name__ == "__main__":
|
166 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|