Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
import cv2 | |
from models.HybridGNet2IGSC import Hybrid | |
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart | |
import scipy.sparse as sp | |
import torch | |
import pandas as pd | |
from zipfile import ZipFile | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
hybrid = None | |
def getDenseMask(landmarks, h, w): | |
RL = landmarks[0:44] | |
LL = landmarks[44:94] | |
H = landmarks[94:] | |
img = np.zeros([h, w], dtype = 'uint8') | |
RL = RL.reshape(-1, 1, 2).astype('int') | |
LL = LL.reshape(-1, 1, 2).astype('int') | |
H = H.reshape(-1, 1, 2).astype('int') | |
img = cv2.drawContours(img, [RL], -1, 1, -1) | |
img = cv2.drawContours(img, [LL], -1, 1, -1) | |
img = cv2.drawContours(img, [H], -1, 2, -1) | |
return img | |
def getMasks(landmarks, h, w): | |
RL = landmarks[0:44] | |
LL = landmarks[44:94] | |
H = landmarks[94:] | |
RL = RL.reshape(-1, 1, 2).astype('int') | |
LL = LL.reshape(-1, 1, 2).astype('int') | |
H = H.reshape(-1, 1, 2).astype('int') | |
RL_mask = np.zeros([h, w], dtype = 'uint8') | |
LL_mask = np.zeros([h, w], dtype = 'uint8') | |
H_mask = np.zeros([h, w], dtype = 'uint8') | |
RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1) | |
LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1) | |
H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1) | |
return RL_mask, LL_mask, H_mask | |
def drawOnTop(img, landmarks, original_shape): | |
h, w = original_shape | |
output = getDenseMask(landmarks, h, w) | |
image = np.zeros([h, w, 3]) | |
image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float') | |
image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float') | |
image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float') | |
image = np.clip(image, 0, 1) | |
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:] | |
# Draw the landmarks as dots | |
for l in RL: | |
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1) | |
for l in LL: | |
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1) | |
for l in H: | |
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1) | |
return image | |
def loadModel(device): | |
A, AD, D, U = genMatrixesLungsHeart() | |
N1 = A.shape[0] | |
N2 = AD.shape[0] | |
A = sp.csc_matrix(A).tocoo() | |
AD = sp.csc_matrix(AD).tocoo() | |
D = sp.csc_matrix(D).tocoo() | |
U = sp.csc_matrix(U).tocoo() | |
D_ = [D.copy()] | |
U_ = [U.copy()] | |
config = {} | |
config['n_nodes'] = [N1, N1, N1, N2, N2, N2] | |
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()] | |
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_)) | |
config['latents'] = 64 | |
config['inputsize'] = 1024 | |
f = 32 | |
config['filters'] = [2, f, f, f, f//2, f//2, f//2] | |
config['skip_features'] = f | |
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device) | |
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device))) | |
hybrid.eval() | |
return hybrid | |
def pad_to_square(img): | |
h, w = img.shape[:2] | |
if h > w: | |
padw = (h - w) | |
auxw = padw % 2 | |
img = np.pad(img, ((0, 0), (padw//2, padw//2 + auxw)), 'constant') | |
padh = 0 | |
auxh = 0 | |
else: | |
padh = (w - h) | |
auxh = padh % 2 | |
img = np.pad(img, ((padh//2, padh//2 + auxh), (0, 0)), 'constant') | |
padw = 0 | |
auxw = 0 | |
return img, (padh, padw, auxh, auxw) | |
def preprocess(input_img): | |
img, padding = pad_to_square(input_img) | |
h, w = img.shape[:2] | |
if h != 1024 or w != 1024: | |
img = cv2.resize(img, (1024, 1024), interpolation = cv2.INTER_CUBIC) | |
return img, (h, w, padding) | |
def removePreprocess(output, info): | |
h, w, padding = info | |
if h != 1024 or w != 1024: | |
output = output * h | |
else: | |
output = output * 1024 | |
padh, padw, auxh, auxw = padding | |
output[:, 0] = output[:, 0] - padw//2 | |
output[:, 1] = output[:, 1] - padh//2 | |
return output | |
def zip_files(files): | |
with ZipFile("complete_results.zip", "w") as zipObj: | |
for idx, file in enumerate(files): | |
zipObj.write(file, arcname=file.split("/")[-1]) | |
return "complete_results.zip" | |
def segment(input_img): | |
global hybrid, device | |
if hybrid is None: | |
hybrid = loadModel(device) | |
input_img = cv2.imread(input_img, 0) / 255.0 | |
original_shape = input_img.shape[:2] | |
img, (h, w, padding) = preprocess(input_img) | |
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float() | |
with torch.no_grad(): | |
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) | |
output = removePreprocess(output, (h, w, padding)) | |
output = output.astype('int') | |
outseg = drawOnTop(input_img, output, original_shape) | |
seg_to_save = (outseg.copy() * 255).astype('uint8') | |
cv2.imwrite("tmp/overlap_segmentation.png" , cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR)) | |
RL = output[0:44] | |
LL = output[44:94] | |
H = output[94:] | |
np.savetxt("tmp/RL_landmarks.txt", RL, delimiter=" ", fmt="%d") | |
np.savetxt("tmp/LL_landmarks.txt", LL, delimiter=" ", fmt="%d") | |
np.savetxt("tmp/H_landmarks.txt", H, delimiter=" ", fmt="%d") | |
RL_mask, LL_mask, H_mask = getMasks(output, original_shape[0], original_shape[1]) | |
cv2.imwrite("tmp/RL_mask.png", RL_mask) | |
cv2.imwrite("tmp/LL_mask.png", LL_mask) | |
cv2.imwrite("tmp/H_mask.png", H_mask) | |
zip = zip_files(["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png"]) | |
return outseg, ["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png", zip] | |
if __name__ == "__main__": | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Chest X-ray HybridGNet Segmentation. | |
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis." | |
Instructions: | |
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format. | |
2. Click on "Segment Image". | |
Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation. | |
Please check citations below. | |
""") | |
with gr.Tab("Segment Image"): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", height=750) | |
with gr.Row(): | |
clear_button = gr.Button("Clear") | |
image_button = gr.Button("Segment Image") | |
gr.Examples(inputs=image_input, examples=['utils/example1.jpg','utils/example2.jpg','utils/example3.png','utils/example4.jpg']) | |
with gr.Column(): | |
image_output = gr.Image(type="filepath", height=750) | |
results = gr.File() | |
gr.Markdown(""" | |
If you use this code, please cite: | |
``` | |
@article{gaggion2022TMI, | |
doi = {10.1109/tmi.2022.3224660}, | |
url = {https://doi.org/10.1109%2Ftmi.2022.3224660}, | |
year = 2022, | |
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})}, | |
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante}, | |
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis}, | |
journal = {{IEEE} Transactions on Medical Imaging} | |
} | |
``` | |
This model was trained following the procedure explained on: | |
``` | |
@misc{gaggion2022ISBI, | |
title={Multi-center anatomical segmentation with heterogeneous labels via landmark-based models}, | |
author={Nicolás Gaggion and Maria Vakalopoulou and Diego H. Milone and Enzo Ferrante}, | |
year={2022}, | |
eprint={2211.07395}, | |
archivePrefix={arXiv}, | |
primaryClass={eess.IV} | |
} | |
``` | |
Example images extracted from Wikipedia, released under: | |
1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg | |
2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg | |
3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg | |
4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg | |
Author: Nicolás Gaggion | |
Website: [ngaggion.github.io](https://ngaggion.github.io/) | |
""") | |
clear_button.click(lambda: None, None, image_input, queue=False) | |
clear_button.click(lambda: None, None, image_output, queue=False) | |
image_button.click(segment, inputs=image_input, outputs=[image_output, results], queue=False) | |
demo.launch() | |