Redux / app.py
nftnik's picture
Rename gradio_app.py to app.py
840cb83 verified
raw
history blame
8.33 kB
import os
import sys
import random
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download
#####################################
# 1. Funções auxiliares de caminho e import
#####################################
def find_path(name: str, path: str = None) -> str:
"""Busca recursivamente por uma pasta/arquivo 'name' a partir de 'path'."""
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} encontrado em: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""Adiciona o diretório ComfyUI ao sys.path, caso encontrado."""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"Diretório ComfyUI adicionado ao sys.path: {comfyui_path}")
else:
print("Não foi possível encontrar o diretório ComfyUI.")
def import_custom_nodes() -> None:
"""
Inicializa os nós extras do ComfyUI, sem importar o servidor.
"""
from nodes import init_extra_nodes
init_extra_nodes()
#####################################
# 2. Configurando o ambiente
#####################################
add_comfyui_directory_to_sys_path()
import_custom_nodes()
#####################################
# 3. Importando nós do ComfyUI
#####################################
from comfy import model_management
from nodes import (
NODE_CLASS_MAPPINGS,
DualCLIPLoader,
CLIPVisionLoader,
StyleModelLoader,
VAELoader,
CLIPTextEncode,
LoadImage,
EmptyLatentImage,
VAEDecode
)
#####################################
# 4. Download de modelos (ajuste conforme sua necessidade)
#####################################
# Criando pastas de modelos, se necessário
os.makedirs("models/text_encoders", exist_ok=True)
os.makedirs("models/style_models", exist_ok=True)
os.makedirs("models/diffusion_models", exist_ok=True)
os.makedirs("models/vae", exist_ok=True)
os.makedirs("models/clip_vision", exist_ok=True)
# Baixando os modelos necessários
try:
print("Baixando modelos...")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
local_dir="models/style_models")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
filename="t5xxl_fp16.safetensors",
local_dir="models/text_encoders")
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
local_dir="models/text_encoders")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="ae.safetensors",
local_dir="models/vae")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="flux1-dev.safetensors",
local_dir="models/diffusion_models")
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
filename="model.safetensors",
local_dir="models/clip_vision")
except Exception as e:
print("Erro ao baixar modelos:", e)
#####################################
# 5. Carregando os modelos do ComfyUI
#####################################
# Inicializando nós e modelos
dualcliploader = DualCLIPLoader()
clip_model = dualcliploader.load_clip(
clip_name1="t5xxl_fp16.safetensors",
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
type="flux"
)
clipvisionloader = CLIPVisionLoader()
clip_vision_model = clipvisionloader.load_clip(
clip_name="model.safetensors"
)
stylemodelloader = StyleModelLoader()
style_model = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
vaeloader = VAELoader()
vae_model = vaeloader.load_vae(
vae_name="ae.safetensors"
)
model_management.load_models_gpu([
clip_model[0], clip_vision_model[0], style_model[0], vae_model[0]
])
#####################################
# 6. Função de geração de imagem
#####################################
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Retorna o valor no índice especificado."""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def generate_image(
prompt: str,
input_image_path: str,
guidance: float,
downsampling_factor: float,
weight: float,
seed: int,
width: int,
height: int,
steps: int,
progress=gr.Progress(track_tqdm=True)
):
"""
Gera uma imagem usando os nós do ComfyUI.
"""
try:
# Garantindo repetibilidade do seed
torch.manual_seed(seed)
random.seed(seed)
# Encode do texto
cliptextencode = CLIPTextEncode()
encoded_text = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(clip_model, 0)
)
# Carregar imagem de entrada
loadimage = LoadImage()
loaded_image = loadimage.load_image(image=input_image_path)
# Guidance
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
flux_guided = fluxguidance.append(
guidance=guidance,
conditioning=get_value_at_index(encoded_text, 0)
)
# Aplicar estilo
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
styled_image = reduxadvanced.apply_stylemodel(
downsampling_factor=downsampling_factor,
downsampling_function="area",
mode="keep aspect ratio",
weight=weight,
conditioning=get_value_at_index(flux_guided, 0),
style_model=get_value_at_index(style_model, 0),
clip_vision=get_value_at_index(clip_vision_model, 0),
image=get_value_at_index(loaded_image, 0)
)
# Gerar imagem final (decodificar do VAE)
vaedecode = VAEDecode()
decoded_image = vaedecode.decode(
samples=get_value_at_index(styled_image, 0),
vae=get_value_at_index(vae_model, 0)
)
# Salvar a imagem
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, f"generated_{random.randint(1, 99999)}.png")
Image.fromarray((decoded_image[0] * 255).astype("uint8")).save(output_path)
return output_path
except Exception as e:
print("Erro ao gerar imagem:", e)
return None
#####################################
# 7. Interface Gradio
#####################################
with gr.Blocks() as app:
gr.Markdown("# FLUX Redux Image Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Escreva seu prompt...", lines=3)
input_image = gr.Image(label="Imagem de Entrada", type="filepath")
guidance_slider = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Guidance")
downsampling_factor_slider = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Downsampling Factor")
weight_slider = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Estilo")
seed_input = gr.Number(label="Seed", value=random.randint(1, 2**32), precision=0)
width_input = gr.Number(label="Largura", value=512, precision=0)
height_input = gr.Number(label="Altura", value=512, precision=0)
steps_input = gr.Number(label="Passos", value=50, precision=0)
generate_btn = gr.Button("Gerar Imagem")
with gr.Column():
output_image = gr.Image(label="Imagem Gerada")
generate_btn.click(
fn=generate_image,
inputs=[
prompt_input, input_image, guidance_slider,
downsampling_factor_slider, weight_slider,
seed_input, width_input, height_input, steps_input
],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch()