Spaces:
Sleeping
Sleeping
Commit
·
a71ad3a
1
Parent(s):
a11efd4
setting unsafe true^Cor spinner
Browse files
app.py
CHANGED
@@ -289,10 +289,8 @@ def load_model():
|
|
289 |
# Load the model
|
290 |
multiModel = MultimodalModel(bert_model_name, num_labels)
|
291 |
|
292 |
-
# Load the model weights directly from Hugging Face Spaces
|
293 |
multiModel.load_state_dict(torch.hub.load_state_dict_from_url(model_weights_path, map_location=device), strict=False)
|
294 |
-
|
295 |
-
# multiModel.load_state_dict(torch.load(file_path + "/MultiModal_model_state_dict.pth",map_location=device),strict=False)
|
296 |
tokenizer = AutoTokenizer.from_pretrained("netgvarun2005/MultiModalBertHubertTokenizer")
|
297 |
|
298 |
# GenAI
|
@@ -421,7 +419,7 @@ def process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer):
|
|
421 |
|
422 |
try:
|
423 |
audio_array, sr = librosa.load(preprocessWavFile(temp_filename), sr=None)
|
424 |
-
with st.spinner(st.markdown("<p style='font-size: 16px; font-weight: bold;'>Generating transcriptions in the side pane! Please wait...</p>", unsafe_allow_html=
|
425 |
transcription = speechtoText(temp_filename)
|
426 |
emo = predict(audio_array,ser_model,2,tokenizer,transcription)
|
427 |
# Display the transcription in a textbox
|
@@ -436,7 +434,7 @@ def process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer):
|
|
436 |
# Store the value of emo in the session state
|
437 |
st.session_state.emo = emo
|
438 |
if st.button(button_label):
|
439 |
-
with st.spinner(st.markdown("<p style='font-size: 16px; font-weight: bold;'>Generating tips (it may take upto 3-4 mins depending upon network speed). Please wait...</p>", unsafe_allow_html=
|
440 |
# Retrieve prompt from the emotion
|
441 |
emo = st.session_state.emo
|
442 |
# Call the function for GENAI
|
|
|
289 |
# Load the model
|
290 |
multiModel = MultimodalModel(bert_model_name, num_labels)
|
291 |
|
292 |
+
# Load the model weights and tokenizer directly from Hugging Face Spaces
|
293 |
multiModel.load_state_dict(torch.hub.load_state_dict_from_url(model_weights_path, map_location=device), strict=False)
|
|
|
|
|
294 |
tokenizer = AutoTokenizer.from_pretrained("netgvarun2005/MultiModalBertHubertTokenizer")
|
295 |
|
296 |
# GenAI
|
|
|
419 |
|
420 |
try:
|
421 |
audio_array, sr = librosa.load(preprocessWavFile(temp_filename), sr=None)
|
422 |
+
with st.spinner(st.markdown("<p style='font-size: 16px; font-weight: bold;'>Generating transcriptions in the side pane! Please wait...</p>", unsafe_allow_html=True)):
|
423 |
transcription = speechtoText(temp_filename)
|
424 |
emo = predict(audio_array,ser_model,2,tokenizer,transcription)
|
425 |
# Display the transcription in a textbox
|
|
|
434 |
# Store the value of emo in the session state
|
435 |
st.session_state.emo = emo
|
436 |
if st.button(button_label):
|
437 |
+
with st.spinner(st.markdown("<p style='font-size: 16px; font-weight: bold;'>Generating tips (it may take upto 3-4 mins depending upon network speed). Please wait...</p>", unsafe_allow_html=True)):
|
438 |
# Retrieve prompt from the emotion
|
439 |
emo = st.session_state.emo
|
440 |
# Call the function for GENAI
|