VirtualTherapist / app.py_BKP
sharmavaruncs's picture
handling recording error properly!
3188dd2
raw
history blame
12.6 kB
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import librosa
import time
from matplotlib import cm
import soundfile as sf
import sounddevice as sd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from PIL import Image
import torch.nn.functional as F
import streamlit as st
import tempfile
import noisereduce as nr
import altair as alt
import pyaudio
import wave
import whisper
from transformers import (
HubertForSequenceClassification,
Wav2Vec2FeatureExtractor,
AutoModel,
AutoTokenizer,
HubertForSequenceClassification
)
from transformers import AutoTokenizer, AutoModelForCausalLM
emo2promptMapping = {
'Angry':'ANGRY',
'Calm':'CALM',
'Disgust':'DISGUSTED',
'Fearful':'FEARFUL',
'Happy': 'HAPPY',
'Sad': 'SAD',
'Surprised': 'SURPRISED'
}
# Check if GPU (cuda) is available
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
#Load speech to text model
speech_model = whisper.load_model("base")
#Define Labels related info
num_labels=7
label_mapping = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'sad', 'surprised']
# Define your model name from the Hugging Face model hub
model_weights_path = "https://huggingface.co/netgvarun2005/MultiModalBertHubert/resolve/main/MultiModal_model_state_dict.pth"
# Emo Detector
model_id = "facebook/hubert-base-ls960"
bert_model_name = "bert-base-uncased"
def config():
# Loading Image using PIL
im = Image.open('./icon.png')
# Set the page configuration with the title and icon
st.set_page_config(page_title="Virtual Therapist", page_icon=im)
# Add custom CSS styles
st.markdown("""
<style>
.mobile-screen {
border: 2px solid black;
display: flex;
flex-direction: column;
align-items: center;
justify-content: flex-start; /* Align content to the top */
height: 20vh;
padding: 20px;
border-radius: 10px;
}
</style>
""", unsafe_allow_html=True)
# Render mobile screen container and its content
st.sidebar.title("Sound Recorder")
# Define a custom style for your title
title_style = """
<style>
h1 {
font-family: 'Comic Sans MS', cursive, sans-serif;
color: blue;
font-size: 22px; /* Add font size here */
}
</style>
"""
# Display the title with the custom style
st.markdown(title_style, unsafe_allow_html=True)
st.markdown("# WELCOME! HOW ARE YOU FEELING? PLEASE RECORD AN AUDIO!", unsafe_allow_html=True)
st.markdown("# BASED ON YOUR EMOTIONAL STATE, I WILL SUGGEST SOME TIPS!", unsafe_allow_html=True)
return
class MultimodalModel(nn.Module):
'''
Custom PyTorch model that takes as input both the audio features and the text embeddings, and concatenates the last hidden states from the Hubert and BERT models.
'''
def __init__(self, bert_model_name, num_labels):
super().__init__()
self.hubert = HubertForSequenceClassification.from_pretrained("netgvarun2005/HubertStandaloneEmoDetector", num_labels=num_labels).hubert
self.bert = AutoModel.from_pretrained(bert_model_name)
self.classifier = nn.Linear(self.hubert.config.hidden_size + self.bert.config.hidden_size, num_labels)
def forward(self, input_values, text):
hubert_output = self.hubert(input_values).last_hidden_state
bert_output = self.bert(text).last_hidden_state
# Apply mean pooling along the sequence dimension
hubert_output = hubert_output.mean(dim=1)
bert_output = bert_output.mean(dim=1)
concat_output = torch.cat((hubert_output, bert_output), dim=-1)
logits = self.classifier(concat_output)
return logits
def speechtoText(wavfile):
return speech_model.transcribe(wavfile)['text']
def resampleaudio(wavfile):
audio, sr = librosa.load(wavfile, sr=None)
# Set the desired target sample rate
target_sample_rate = 16000
# Resample the audio to the target sample rate
resampled_audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sample_rate)
sf.write(wavfile,resampled_audio, target_sample_rate)
return wavfile
def noiseReduction(wavfile):
audio, sr = librosa.load(wavfile, sr=None)
# Set parameters for noise reduction
n_fft = 2048 # FFT window size
hop_length = 512 # Hop length for STFT
# Perform noise reduction
reduced_noise = nr.reduce_noise(y=audio, sr=sr, n_fft=n_fft, hop_length=hop_length)
# Save the denoised audio to a new WAV file
sf.write(wavfile,reduced_noise, sr)
return wavfile
def removeSilence(wavfile):
# Load the audio file
audio_file = wavfile
audio, sr = librosa.load(audio_file, sr=None)
# Split the audio file based on silence
clips = librosa.effects.split(audio, top_db=40)
# Combine the audio clips
non_silent_audio = []
for start, end in clips:
non_silent_audio.extend(audio[start:end])
# Save the audio without silence to a new WAV file
sf.write(wavfile,non_silent_audio, sr)
return wavfile
def preprocessWavFile(wavfile):
resampledwavfile = resampleaudio(wavfile)
denoised_file = noiseReduction(resampledwavfile)
return removeSilence(denoised_file)
@st.cache_data()
def load_model():
# Load the model
multiModel = MultimodalModel(bert_model_name, num_labels)
# Load the model weights directly from Hugging Face Spaces
multiModel.load_state_dict(torch.hub.load_state_dict_from_url(model_weights_path, map_location=device), strict=False)
# multiModel.load_state_dict(torch.load(file_path + "/MultiModal_model_state_dict.pth",map_location=device),strict=False)
tokenizer = AutoTokenizer.from_pretrained("netgvarun2005/MultiModalBertHubertTokenizer")
# GenAI
tokenizer_gpt = AutoTokenizer.from_pretrained("netgvarun2005/GPTVirtualTherapistTokenizer", pad_token='<|pad|>',bos_token='<|startoftext|>',eos_token='<|endoftext|>')
model_gpt = AutoModelForCausalLM.from_pretrained("netgvarun2005/GPTVirtualTherapist")
return multiModel,tokenizer,model_gpt,tokenizer_gpt
def predict(audio_array,multiModal_model,key,tokenizer,text):
input_text = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_id)
input_audio = feature_extractor(
raw_speech=audio_array,
sampling_rate=16000,
padding=True,
return_tensors="pt"
)
logits = multiModal_model(input_audio["input_values"], input_text["input_ids"])
probabilities = F.softmax(logits, dim=1).to_dense()
_, predicted = torch.max(probabilities, 1)
class_prob = probabilities.tolist()
class_prob = class_prob[0]
class_prob = [round(value, 2) for value in class_prob]
maxVal = np.argmax(class_prob)
# Display the final transcript
if label_mapping[predicted] == "":
st.write("Inference impossible, a problem occurred with your audio or your parameters, we apologize :(")
return (label_mapping[maxVal]).capitalize()
def record_audio(output_file, duration=5):
# st.sidebar.markdown("Recording...")
sd.wait() # Wait for microphone to start
sd.wait() # Wait for microphone to start
time.sleep(0.4)
st.sidebar.markdown("<p style='font-size: 14px; font-weight: bold;'>Recording...</p>", unsafe_allow_html=True)
chunk = 1024
sample_format = pyaudio.paInt16
channels = 2
fs = 44100
p = pyaudio.PyAudio()
stream = p.open(format=sample_format,
channels=channels,
rate=fs,
frames_per_buffer=chunk,
input=True)
frames = []
for _ in range(int(fs / chunk * duration)):
data = stream.read(chunk)
frames.append(data)
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(output_file, 'wb')
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(fs)
wf.writeframes(b''.join(frames))
wf.close()
time.sleep(0.5)
# st.sidebar.markdown("Recording finished!")
st.sidebar.markdown("<p style='font-size: 14px; font-weight: bold;'>Recording finished!</p>", unsafe_allow_html=True)
time.sleep(0.5)
def GenerateText(emo,gpt_tokenizer,gpt_model):
prompt = f'<startoftext>{emo2promptMapping[emo]}:'
generated = gpt_tokenizer(prompt, return_tensors="pt").input_ids
sample_outputs = gpt_model.generate(generated, do_sample=True, top_k=50,
max_length=20, top_p=0.95, temperature=0.2, num_return_sequences=10,no_repeat_ngram_size=1)
# Extract and split the generated text into words
outputs = set([gpt_tokenizer.decode(sample_output, skip_special_tokens=True).split(':')[-1] for sample_output in sample_outputs])
for i, sample_output in enumerate(outputs):
st.write(f"<span style='font-size: 18px; font-family: Arial, sans-serif; font-weight: bold;'>{i+1}: {sample_output}</span>", unsafe_allow_html=True)
time.sleep(0.5)
def process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer):
emo = ""
button_label = "Show Helpful Tips"
recorded = False # Initialize the recording state as False
if 'stage' not in st.session_state:
st.session_state.stage = 0
def set_stage(stage):
st.session_state.stage = stage
# Add custom CSS styles
st.markdown("""
<style>
.stRecordButton {
width: 50px;
height: 50px;
border-radius: 50px;
background-color: red;
color: black; /* Text color */
font-size: 16px;
font-weight: bold;
border: 2px solid white; /* Solid border */
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
cursor: pointer;
transition: background-color 0.2s;
display: flex;
justify-content: center;
align-items: center;
}
.stRecordButton:hover {
background-color: darkred; /* Change background color on hover */
}
</style>
""", unsafe_allow_html=True)
if st.sidebar.button("Record a 4 sec audio!", key="record_button", help="Click to start recording", on_click=set_stage, args=(1,)):
# Your button click action here
# Apply bold styling to the button label
st.sidebar.markdown("<span style='font-weight: bolder;'>Record a 4 sec audio!</span>", unsafe_allow_html=True)
# recorded = True # Set the recording state to True after recording
# Add your audio recording code here
output_wav_file = "output.wav"
record_audio(output_wav_file, duration=4)
# # Use a div to encapsulate the audio element and apply the border
with st.sidebar.markdown('<div class="audio-container">', unsafe_allow_html=True):
# Play recorded sound
st.audio(output_wav_file, format="wav")
audio_array, sr = librosa.load(preprocessWavFile(output_wav_file), sr=None)
st.sidebar.markdown("<p style='font-size: 14px; font-weight: bold;'>Generating transcriptions! Please wait...</p>", unsafe_allow_html=True)
transcription = speechtoText(output_wav_file)
emo = predict(audio_array,ser_model,2,tokenizer,transcription)
# Display the transcription in a textbox
st.sidebar.text_area("Transcription", transcription, height=25)
txt = f"You seem to be <b>{(emo2promptMapping[emo]).capitalize()}!</b>\n Click on 'Show Helpful Tips' button to proceed further."
st.markdown(f"<div class='mobile-screen' style='font-size: 24px;'>{txt} </div>", unsafe_allow_html=True)
# Store the value of emo in the session state
st.session_state.emo = emo
if st.session_state.stage > 0:
if st.button(button_label,on_click=set_stage, args=(2,)):
# Retrieve prompt from the emotion
emo = st.session_state.emo
GenerateText(emo,gpt_tokenizer,gpt_model)
if __name__ == '__main__':
config()
ser_model,tokenizer,gpt_model,gpt_tokenizer = load_model()
process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer)