Spaces:
Sleeping
Sleeping
File size: 12,712 Bytes
9570c1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import librosa
import time
import IPython.display as ipd
from matplotlib import cm
import soundfile as sf
from IPython.display import clear_output
import sounddevice as sd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from PIL import Image
import torch.nn.functional as F
import streamlit as st
import tempfile
import noisereduce as nr
import altair as alt
import pyaudio
import wave
import whisper
from transformers import (
HubertForSequenceClassification,
Wav2Vec2FeatureExtractor,
AutoModel,
AutoTokenizer,
HubertForSequenceClassification
)
from transformers import AutoTokenizer, AutoModelForCausalLM
emo2promptMapping = {
'Angry':'ANGRY',
'Calm':'CALM',
'Disgust':'DISGUSTED',
'Fearful':'FEARFUL',
'Happy': 'HAPPY',
'Sad': 'SAD',
'Surprised': 'SURPRISED'
}
# Check if GPU (cuda) is available
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
#Load speech to text model
speech_model = whisper.load_model("base")
#Define Labels related info
num_labels=7
label_mapping = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'sad', 'surprised']
# Get the path of the current directory
current_dir = os.path.dirname(os.path.abspath(__file__))
# Create the path to the file in the parent directory
parent_dir = os.path.abspath(os.path.join(current_dir, "../EmotionDetector/Models/"))
file_path = os.path.join(parent_dir, "MultiModal/MultiModal_model_state_dict.pth")
# GenAI model
parent_dir2 = os.path.abspath(os.path.join(current_dir, "../GenAI/"))
# Emo Detector
model_id = "facebook/hubert-base-ls960"
bert_model_name = "bert-base-uncased"
tokenizerDir = os.path.join(parent_dir, 'Tokenizer\\')
def config():
# Loading Image using PIL
im = Image.open('./icon.png')
# Set the page configuration with the title and icon
st.set_page_config(page_title="Virtual Therapist", page_icon=im)
# Add custom CSS styles
st.markdown("""
<style>
.mobile-screen {
border: 2px solid black;
display: flex;
flex-direction: column;
align-items: center;
justify-content: flex-start; /* Align content to the top */
height: 20vh;
padding: 20px;
border-radius: 10px;
}
</style>
""", unsafe_allow_html=True)
# Render mobile screen container and its content
st.sidebar.title("Sound Recorder")
# Define a custom style for your title
title_style = """
<style>
h1 {
font-family: 'Comic Sans MS', cursive, sans-serif;
color: blue;
font-size: 22px; /* Add font size here */
}
</style>
"""
# Display the title with the custom style
st.markdown(title_style, unsafe_allow_html=True)
st.markdown("# WELCOME! HOW ARE YOU FEELING? PLEASE RECORD AN AUDIO!", unsafe_allow_html=True)
st.markdown("# BASED ON YOUR EMOTIONAL STATE, I WILL SUGGEST SOME TIPS!", unsafe_allow_html=True)
return
class MultimodalModel(nn.Module):
'''
Custom PyTorch model that takes as input both the audio features and the text embeddings, and concatenates the last hidden states from the Hubert and BERT models.
'''
def __init__(self, bert_model_name, num_labels):
super().__init__()
self.hubert = HubertForSequenceClassification.from_pretrained("netgvarun2005/HubertStandaloneEmoDetector", num_labels=num_labels).hubert
self.bert = AutoModel.from_pretrained(bert_model_name)
self.classifier = nn.Linear(self.hubert.config.hidden_size + self.bert.config.hidden_size, num_labels)
def forward(self, input_values, text):
hubert_output = self.hubert(input_values).last_hidden_state
bert_output = self.bert(text).last_hidden_state
# Apply mean pooling along the sequence dimension
hubert_output = hubert_output.mean(dim=1)
bert_output = bert_output.mean(dim=1)
concat_output = torch.cat((hubert_output, bert_output), dim=-1)
logits = self.classifier(concat_output)
return logits
def speechtoText(wavfile):
return speech_model.transcribe(wavfile)['text']
def resampleaudio(wavfile):
audio, sr = librosa.load(wavfile, sr=None)
# Set the desired target sample rate
target_sample_rate = 16000
# Resample the audio to the target sample rate
resampled_audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sample_rate)
sf.write(wavfile,resampled_audio, target_sample_rate)
return wavfile
def noiseReduction(wavfile):
audio, sr = librosa.load(wavfile, sr=None)
# Set parameters for noise reduction
n_fft = 2048 # FFT window size
hop_length = 512 # Hop length for STFT
# Perform noise reduction
reduced_noise = nr.reduce_noise(y=audio, sr=sr, n_fft=n_fft, hop_length=hop_length)
# Save the denoised audio to a new WAV file
sf.write(wavfile,reduced_noise, sr)
return wavfile
def removeSilence(wavfile):
# Load the audio file
audio_file = wavfile
audio, sr = librosa.load(audio_file, sr=None)
# Split the audio file based on silence
clips = librosa.effects.split(audio, top_db=40)
# Combine the audio clips
non_silent_audio = []
for start, end in clips:
non_silent_audio.extend(audio[start:end])
# Save the audio without silence to a new WAV file
sf.write(wavfile,non_silent_audio, sr)
return wavfile
def preprocessWavFile(wavfile):
resampledwavfile = resampleaudio(wavfile)
denoised_file = noiseReduction(resampledwavfile)
return removeSilence(denoised_file)
@st.cache(allow_output_mutation=True)
def load_model():
# Load the model
multiModel = MultimodalModel(bert_model_name, num_labels)
multiModel.load_state_dict(torch.load(file_path + "/MultiModal_model_state_dict.pth",map_location=device),strict=False)
tokenizer = AutoTokenizer.from_pretrained(tokenizerDir)
# GenAI
tokenizer_gpt = AutoTokenizer.from_pretrained(os.path.join(parent_dir2,"Tokenizer"), pad_token='<|pad|>',bos_token='<|startoftext|>',eos_token='<|endoftext|>')
model_gpt = AutoModelForCausalLM.from_pretrained("netgvarun2005/GPTVirtualTherapist")
return multiModel,tokenizer,model_gpt,tokenizer_gpt
def predict(audio_array,multiModal_model,key,tokenizer,text):
input_text = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_id)
input_audio = feature_extractor(
raw_speech=audio_array,
sampling_rate=16000,
padding=True,
return_tensors="pt"
)
logits = multiModal_model(input_audio["input_values"], input_text["input_ids"])
probabilities = F.softmax(logits, dim=1).to_dense()
_, predicted = torch.max(probabilities, 1)
class_prob = probabilities.tolist()
class_prob = class_prob[0]
class_prob = [round(value, 2) for value in class_prob]
maxVal = np.argmax(class_prob)
# Display the final transcript
if label_mapping[predicted] == "":
st.write("Inference impossible, a problem occurred with your audio or your parameters, we apologize :(")
return (label_mapping[maxVal]).capitalize()
def record_audio(output_file, duration=5):
# st.sidebar.markdown("Recording...")
sd.wait() # Wait for microphone to start
sd.wait() # Wait for microphone to start
time.sleep(0.4)
st.sidebar.markdown("<p style='font-size: 14px; font-weight: bold;'>Recording...</p>", unsafe_allow_html=True)
chunk = 1024
sample_format = pyaudio.paInt16
channels = 2
fs = 44100
p = pyaudio.PyAudio()
stream = p.open(format=sample_format,
channels=channels,
rate=fs,
frames_per_buffer=chunk,
input=True)
frames = []
for _ in range(int(fs / chunk * duration)):
data = stream.read(chunk)
frames.append(data)
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(output_file, 'wb')
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(fs)
wf.writeframes(b''.join(frames))
wf.close()
time.sleep(0.5)
# st.sidebar.markdown("Recording finished!")
st.sidebar.markdown("<p style='font-size: 14px; font-weight: bold;'>Recording finished!</p>", unsafe_allow_html=True)
time.sleep(0.5)
def GenerateText(emo,gpt_tokenizer,gpt_model):
prompt = f'<startoftext>{emo2promptMapping[emo]}:'
generated = gpt_tokenizer(prompt, return_tensors="pt").input_ids
sample_outputs = gpt_model.generate(generated, do_sample=True, top_k=50,
max_length=20, top_p=0.95, temperature=0.2, num_return_sequences=10,no_repeat_ngram_size=1)
# Extract and split the generated text into words
outputs = set([gpt_tokenizer.decode(sample_output, skip_special_tokens=True).split(':')[-1] for sample_output in sample_outputs])
for i, sample_output in enumerate(outputs):
st.write(f"<span style='font-size: 18px; font-family: Arial, sans-serif; font-weight: bold;'>{i+1}: {sample_output}</span>", unsafe_allow_html=True)
time.sleep(0.5)
def process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer):
emo = ""
button_label = "Show Helpful Tips"
recorded = False # Initialize the recording state as False
if 'stage' not in st.session_state:
st.session_state.stage = 0
def set_stage(stage):
st.session_state.stage = stage
# Add custom CSS styles
st.markdown("""
<style>
.stRecordButton {
width: 50px;
height: 50px;
border-radius: 50px;
background-color: red;
color: black; /* Text color */
font-size: 16px;
font-weight: bold;
border: 2px solid white; /* Solid border */
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
cursor: pointer;
transition: background-color 0.2s;
display: flex;
justify-content: center;
align-items: center;
}
.stRecordButton:hover {
background-color: darkred; /* Change background color on hover */
}
</style>
""", unsafe_allow_html=True)
if st.sidebar.button("Record a 4 sec audio!", key="record_button", help="Click to start recording", on_click=set_stage, args=(1,)):
# Your button click action here
# Apply bold styling to the button label
st.sidebar.markdown("<span style='font-weight: bolder;'>Record a 4 sec audio!</span>", unsafe_allow_html=True)
# recorded = True # Set the recording state to True after recording
# Add your audio recording code here
output_wav_file = "output.wav"
record_audio(output_wav_file, duration=4)
# # Use a div to encapsulate the audio element and apply the border
with st.sidebar.markdown('<div class="audio-container">', unsafe_allow_html=True):
# Play recorded sound
st.audio(output_wav_file, format="wav")
audio_array, sr = librosa.load(preprocessWavFile(output_wav_file), sr=None)
st.sidebar.markdown("<p style='font-size: 14px; font-weight: bold;'>Generating transcriptions! Please wait...</p>", unsafe_allow_html=True)
transcription = speechtoText(output_wav_file)
emo = predict(audio_array,ser_model,2,tokenizer,transcription)
# Display the transcription in a textbox
st.sidebar.text_area("Transcription", transcription, height=25)
txt = f"You seem to be <b>{(emo2promptMapping[emo]).capitalize()}!</b>\n Click on 'Show Helpful Tips' button to proceed further."
st.markdown(f"<div class='mobile-screen' style='font-size: 24px;'>{txt} </div>", unsafe_allow_html=True)
# Store the value of emo in the session state
st.session_state.emo = emo
if st.session_state.stage > 0:
if st.button(button_label,on_click=set_stage, args=(2,)):
# Retrieve prompt from the emotion
emo = st.session_state.emo
GenerateText(emo,gpt_tokenizer,gpt_model)
if __name__ == '__main__':
config()
ser_model,tokenizer,gpt_model,gpt_tokenizer = load_model()
process_file(ser_model,tokenizer,gpt_model,gpt_tokenizer)
|