File size: 6,534 Bytes
e547b24
1b9717a
e547b24
 
 
 
 
1b9717a
 
e547b24
1b9717a
e547b24
1b9717a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
eac94ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
 
 
 
eac94ad
 
 
 
 
 
 
 
6f5a32e
e547b24
1b9717a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
1b9717a
e547b24
1b9717a
 
 
 
 
 
 
 
 
 
 
 
753d150
1b9717a
eac94ad
 
753d150
e547b24
1b9717a
 
e547b24
1b9717a
e547b24
02f8cfa
4d6cbec
eac94ad
 
9608c70
eac94ad
 
 
9608c70
eac94ad
 
 
9608c70
 
eac94ad
 
 
9608c70
 
 
 
 
 
 
 
 
73f7edc
e547b24
 
9608c70
1b9717a
4d6cbec
02f8cfa
 
 
 
753d150
 
eac94ad
 
753d150
 
4d6cbec
eac94ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
eac94ad
4d6cbec
02f8cfa
eac94ad
 
 
1b9717a
eac94ad
 
e547b24
eac94ad
 
 
 
753d150
e547b24
eac94ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import torch
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
from diffusers import DiffusionPipeline
from huggingface_hub import hf_hub_download

# Project by Nymbo with LoRA integration

# Model and LoRA configuration
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
LORA_REPO = "burhansyam/uncen"
LORA_WEIGHTS_NAME = "uncen.safetensors"  # Adjust if different
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16

# Initialize the pipeline with LoRA
def init_pipeline():
    pipe = DiffusionPipeline.from_pretrained(
        BASE_MODEL,
        torch_dtype=torch_dtype
    )
    
    # Load LoRA weights
    pipe.load_lora_weights(
        hf_hub_download(repo_id=LORA_REPO, filename=LORA_WEIGHTS_NAME),
        adapter_name="uncen"
    )
    
    # Enable model offloading if needed
    if torch.cuda.is_available():
        pipe.to("cuda")
        pipe.enable_xformers_memory_efficient_attention()
    
    return pipe

pipe = init_pipeline()

def convert_to_png(image):
    """Convert any image format to true PNG format"""
    png_buffer = io.BytesIO()
    if image.mode == 'RGBA':
        image.save(png_buffer, format='PNG', optimize=True)
    else:
        if image.mode != 'RGB':
            image = image.convert('RGB')
        image.save(png_buffer, format='PNG', optimize=True)
    png_buffer.seek(0)
    return Image.open(png_buffer)

def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", 
          seed=-1, strength=0.7, width=1024, height=1024):
    if not prompt:
        return None

    key = random.randint(0, 999)
    
    # Translate prompt
    try:
        prompt = GoogleTranslator(source='id', target='en').translate(prompt)
        print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
        prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    except Exception as e:
        print(f"Translation error: {e}")
    
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    
    # Set random seed if not specified
    generator = None
    if seed != -1:
        generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
    else:
        seed = random.randint(1, 1000000000)
        generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
    
    # Map sampler names to Diffusers scheduler names
    sampler_map = {
        "DPM++ 2M Karras": "dpmsolver++",
        "DPM++ SDE Karras": "dpmsolver++",
        "Euler": "euler",
        "Euler a": "euler_a",
        "Heun": "heun",
        "DDIM": "ddim"
    }
    
    try:
        # Generate image with LoRA
        image = pipe(
            prompt=prompt,
            negative_prompt=is_negative if is_negative else None,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            generator=generator,
            strength=strength,
            width=width,
            height=height,
            cross_attention_kwargs={"scale": 0.8},  # LoRA strength adjustment
        ).images[0]
        
        png_img = convert_to_png(image)
        print(f'\033[1mGeneration {key} completed as PNG!\033[0m')
        return png_img
        
    except Exception as e:
        print(f"Generation error: {e}")
        raise gr.Error(f"Image generation failed: {str(e)}")

# Light theme CSS (same as before)
css = """
#app-container {
    max-width: 800px;
    margin: 0 auto;
    padding: 20px;
    background: #ffffff;
}
#prompt-text-input, #negative-prompt-text-input {
    font-size: 14px;
    background: #f9f9f9;
}
#gallery {
    min-height: 512px;
    background: #ffffff;
    border: 1px solid #e0e0e0;
}
#gen-button {
    margin: 10px 0;
    background: #4CAF50;
    color: white;
}
.accordion {
    background: #f5f5f5;
    border: 1px solid #e0e0e0;
}
h1 {
    color: #333333;
}
"""

with gr.Blocks(theme=gr.themes.Default(primary_hue="green"), css=css) as app:
    gr.HTML("<center><h1>FLUX.1-Dev with LoRA (PNG Output)</h1></center>")
    
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(
                        label="Prompt", 
                        placeholder="Masukkan prompt dalam Bahasa Indonesia", 
                        lines=2,
                        elem_id="prompt-text-input"
                    )
                
                with gr.Accordion("Advanced Settings", open=False):
                    negative_prompt = gr.Textbox(
                        label="Negative Prompt", 
                        value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                        lines=3
                    )
                    with gr.Row():
                        width = gr.Slider(1024, label="Width", minimum=512, maximum=1536, step=64)
                        height = gr.Slider(1024, label="Height", minimum=512, maximum=1536, step=64)
                    with gr.Row():
                        steps = gr.Slider(35, label="Steps", minimum=10, maximum=100, step=1)
                        cfg = gr.Slider(7.0, label="CFG Scale", minimum=1.0, maximum=20.0, step=0.5)
                    with gr.Row():
                        strength = gr.Slider(0.7, label="Strength", minimum=0.1, maximum=1.0, step=0.01)
                        seed = gr.Number(-1, label="Seed (-1 for random)")
                    method = gr.Radio(
                        ["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"],
                        value="DPM++ 2M Karras",
                        label="Sampling Method"
                    )

        generate_btn = gr.Button("Generate Image", variant="primary")
        
        with gr.Row():
            output_image = gr.Image(
                type="pil",
                label="Generated PNG Image",
                format="png",
                elem_id="gallery"
            )
        
        generate_btn.click(
            fn=query,
            inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height],
            outputs=output_image
        )

app.launch(server_name="0.0.0.0", server_port=7860, share=True)