Spaces:
Running
Running
File size: 2,515 Bytes
693770d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import cv2
import torch
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
# Load model and feature extractor
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
# Gaussian Blur function
def apply_gaussian_blur(image, blur_radius):
return image.filter(ImageFilter.GaussianBlur(blur_radius))
# Lens Blur function
def apply_lens_blur(image):
# Get depth map
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
depth_map = outputs.predicted_depth.squeeze().cpu().numpy()
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 15
depth_map_resized = cv2.resize(depth_map, (image.width, image.height))
depth_map_resized = 15 - depth_map_resized
# Convert to OpenCV format
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
blurred_image = np.zeros_like(image_cv, dtype=np.float32)
for blur_radius in range(1, 16):
blurred_layer = cv2.GaussianBlur(image_cv, (0, 0), sigmaX=blur_radius)
mask = ((depth_map_resized >= (blur_radius - 1)) & (depth_map_resized < blur_radius)).astype(np.float32)
mask = cv2.merge([mask] * 3)
blurred_image += blurred_layer * mask
blurred_image = np.clip(blurred_image, 0, 255).astype(np.uint8)
return Image.fromarray(cv2.cvtColor(blurred_image, cv2.COLOR_BGR2RGB))
# Gradio app interface
def process_image(image, effect, blur_radius):
if effect == "Gaussian Blur":
return apply_gaussian_blur(image, blur_radius)
elif effect == "Lens Blur":
return apply_lens_blur(image)
else:
return image
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Gaussian and Lens Blur Effects")
with gr.Row():
with gr.Column():
uploaded_image = gr.Image(type="pil")
effect = gr.Radio(["Gaussian Blur", "Lens Blur"], value="Gaussian Blur", label="Effect")
blur_radius = gr.Slider(1, 15, value=5, step=1, label="Blur Radius (for Gaussian Blur)")
submit_button = gr.Button("Apply Effect")
with gr.Column():
output_image = gr.Image(type="pil", label="Processed Image")
submit_button.click(process_image, inputs=[uploaded_image, effect, blur_radius], outputs=output_image)
# Launch the app
demo.launch()
|