File size: 21,410 Bytes
45fb393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
import os
from dotenv import load_dotenv
load_dotenv()
embed_model = FastEmbedEmbeddings(model_name="snowflake/snowflake-arctic-embed-m")
from groq import Groq
from langchain_groq import ChatGroq
llm = ChatGroq(temperature=0,
model_name="Llama3-8b-8192",
api_key=os.getenv("GROQ_API_KEY"),)
loader = PyMuPDFLoader("https://home.synise.com/HRUtility/Documents/HRA/UmaP/Synise%20Handbook.pdf")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1500, chunk_overlap=200
)
doc_splits = text_splitter.split_documents(documents)
print(len(doc_splits),doc_splits[0])
vectorstore = FAISS.from_documents(documents=doc_splits,embedding=embed_model)
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import FlashrankRerank
compressor = FlashrankRerank()
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 20})
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
from operator import itemgetter
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
RAG_PROMPT_TEMPLATE = """
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Answer the question based only on the provided context. If you cannot answer the question with the provided context, please respond with 'I don't know" without any preamble, explanation, or additional text.
Context:
{context}
Question:
{question}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_prompt = PromptTemplate(
template=RAG_PROMPT_TEMPLATE, input_variables=["question", "context"]
)
response_chain = (rag_prompt
| llm
| StrOutputParser()
)
def dummy_payroll_api_call(employee_id, month, year):
data = {
2023: {
"MAY": {
"employeeDetails": {
"employeeId": "E2468",
"firstName": "Sarah",
"lastName": "Thompson",
"designation": "Product Manager"
},
"paymentDetails": {
"year": 2023,
"month": "JAN",
"basicSalary": 5500,
"allowances": [
{
"type": "Housing Allowance",
"amount": 1500
},
{
"type": "Travel Allowance",
"amount": 800
}
],
"deductions": [
{
"type": "Provident Fund",
"amount": 650
},
{
"type": "Health Insurance",
"amount": 300
}
],
"taxes": [
{
"type": "Income Tax",
"amount": 1300
}
],
"grossSalary": 7800,
"totalDeductions": 2250,
"netSalary": 6650
},
"companyDetails": {
"companyName": "Tech Solutions Ltd.",
"address": "789 Maple Avenue, City"
}
}
},
2024: {
"JAN": {
"employeeDetails": {
"employeeId": "E2468",
"firstName": "Sarah",
"lastName": "Thompson",
"designation": "Product Manager"
},
"paymentDetails": {
"year": 2024,
"month": "JAN",
"basicSalary": 6500,
"allowances": [
{
"type": "Housing Allowance",
"amount": 1500
},
{
"type": "Travel Allowance",
"amount": 800
}
],
"deductions": [
{
"type": "Provident Fund",
"amount": 650
},
{
"type": "Health Insurance",
"amount": 300
}
],
"taxes": [
{
"type": "Income Tax",
"amount": 1300
}
],
"grossSalary": 8800,
"totalDeductions": 2250,
"netSalary": 6550
},
"companyDetails": {
"companyName": "Tech Solutions Ltd.",
"address": "789 Maple Avenue, City"
}
},
"FEB": {
"employeeDetails": {
"employeeId": "E2468",
"firstName": "Sarah",
"lastName": "Thompson",
"designation": "Product Manager"
},
"paymentDetails": {
"year": 2024,
"month": "FEB",
"basicSalary": 6500,
"allowances": [
{
"type": "Housing Allowance",
"amount": 1500
},
{
"type": "Travel Allowance",
"amount": 800
}
],
"deductions": [
{
"type": "Provident Fund",
"amount": 650
},
{
"type": "Health Insurance",
"amount": 300
}
],
"taxes": [
{
"type": "Income Tax",
"amount": 1300
}
],
"grossSalary": 8800,
"totalDeductions": 2250,
"netSalary": 6550
},
"companyDetails": {
"companyName": "Tech Solutions Ltd.",
"address": "789 Maple Avenue, City"
}
},
"MAY": {
"employeeDetails": {
"employeeId": "E2468",
"firstName": "Sarah",
"lastName": "Thompson",
"designation": "Product Manager"
},
"paymentDetails": {
"year": 2024,
"month": "MAY",
"basicSalary": 6500,
"allowances": [
{
"type": "Housing Allowance",
"amount": 1500
},
{
"type": "Travel Allowance",
"amount": 800
}
],
"deductions": [
{
"type": "Provident Fund",
"amount": 650
},
{
"type": "Health Insurance",
"amount": 300
}
],
"taxes": [
{
"type": "Income Tax",
"amount": 1500
}
],
"grossSalary": 8800,
"totalDeductions": 2450,
"netSalary": 6350
},
"companyDetails": {
"companyName": "Tech Solutions Ltd.",
"address": "789 Maple Avenue, City"
}
},
"APR": {
"employeeDetails": {
"employeeId": "E2468",
"firstName": "Sarah",
"lastName": "Thompson",
"designation": "Product Manager"
},
"paymentDetails": {
"year": 2024,
"month": "APR",
"basicSalary": 6500,
"allowances": [
{
"type": "Housing Allowance",
"amount": 1500
},
{
"type": "Travel Allowance",
"amount": 800
}
],
"deductions": [
{
"type": "Provident Fund",
"amount": 650
},
{
"type": "Health Insurance",
"amount": 300
}
],
"taxes": [
{
"type": "Income Tax",
"amount": 1500
}
],
"grossSalary": 8800,
"totalDeductions": 2450,
"netSalary": 6350
},
"companyDetails": {
"companyName": "Tech Solutions Ltd.",
"address": "789 Maple Avenue, City"
}
}
}
}
year= 2024 if year == "CUR" else year
year= 2023 if year == "PREV" else year
month= "MAY" if month == "CUR" else month
month= "APR" if month == "PREV" else month
return data[year][month]
print(dummy_payroll_api_call(1234, 'CUR', 2024))
import time
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.output_parsers import StrOutputParser
ROUTER_AGENT_PROMPT_TEMPLATE = """
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert at delegating user questions to one of the most appropriate agents 'policy_agent' or 'payroll_agent'.
Use the following criteria to determine the appropriate agents to answer the user que:
- If the query is regarding payslips, salary, tax deductions, basepay of a given month, use payroll_agent'.
- If the question is closely related to general human resource queries, organisational policies, prompt engineering, or adversarial attacks, even if the keywords are not explicitly mentioned, use the 'policyagent'.
Your output should be a JSON object with a single key 'agent' and a value of either 'policy_agent' or 'payroll_agent'. Do not include any preamble, explanation, or additional text.
User's Question: {question}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
router_prompt = PromptTemplate(
template=ROUTER_AGENT_PROMPT_TEMPLATE, input_variables=["question"]
)
router_chain = router_prompt | llm | JsonOutputParser()
print(router_chain.invoke({"question":"What is my salary on 6 2024 ?"}))
print(router_chain.invoke({"question":"What is leave policy ?"}))
payroll_schema= {
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Monthly Payslip",
"description": "A schema for a monthly payslip",
"type": "object",
"properties": {
"employeeDetails": {
"type": "object",
"properties": {
"employeeId": {
"type": "string",
"description": "Unique identifier for the employee"
},
"firstName": {
"type": "string",
"description": "First name of the employee"
},
"lastName": {
"type": "string",
"description": "Last name of the employee"
},
"designation": {
"type": "string",
"description": "Designation or job title of the employee"
}
},
"required": ["employeeId", "firstName", "lastName", "designation"]
},
"paymentDetails": {
"type": "object",
"properties": {
"year": {
"type": "integer",
"description": "Year of the pay period"
},
"month": {
"type": "string",
"enum": ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"],
"description": "Month of the pay period"
},
"basicSalary": {
"type": "number",
"description": "Basic salary of the employee"
},
"allowances": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "Type of allowance"
},
"amount": {
"type": "number",
"description": "Amount of the allowance"
}
},
"required": ["type", "amount"]
}
},
"deductions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "Type of deduction"
},
"amount": {
"type": "number",
"description": "Amount of the deduction"
}
},
"required": ["type", "amount"]
}
},
"taxes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "Type of tax"
},
"amount": {
"type": "number",
"description": "Amount of the tax"
}
},
"required": ["type", "amount"]
}
},
"grossSalary": {
"type": "number",
"description": "Gross salary (basic salary + allowances)"
},
"totalDeductions": {
"type": "number",
"description": "Total deductions (including taxes)"
},
"netSalary": {
"type": "number",
"description": "Net salary (gross salary - total deductions)"
}
},
"required": ["year", "month", "basicSalary", "allowances", "deductions", "taxes", "grossSalary", "totalDeductions", "netSalary"]
},
"companyDetails": {
"type": "object",
"properties": {
"companyName": {
"type": "string",
"description": "Name of the company"
},
"address": {
"type": "string",
"description": "Address of the company"
}
},
"required": ["companyName", "address"]
}
},
"required": ["employeeDetails", "paymentDetails", "companyDetails"]
}
print(str(payroll_schema))
import time
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.output_parsers import StrOutputParser
FILTER_EXTTRACTION_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Extract the month and year from a given user question about payroll. Use the following schema instructions to guide your extraction.
Instructions:
1. Your output should be a JSON object with only two keys, 'month' and 'year'.
2. 'month' key shall have value ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"]
3. 'year' shall be a number between 2020 and 2024.
4. If the user is suggesting current year or month, respond with "CUR" for 'month' and 'year' keys accordingly
5. If the user is suggesting previous year or month, respond with "PREV" for 'month' and 'year' keys accordingly
Do not include any preamble, explanation, or additional text.
User Question: {question}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
filter_extraction_prompt = PromptTemplate(
template=FILTER_EXTTRACTION_PROMPT, input_variables=["question"]
)
fiter_extraction_chain = filter_extraction_prompt | llm | JsonOutputParser()
print(fiter_extraction_chain.invoke({"question":"What is my salary on 6 2024 ?"}))
import time
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.output_parsers import StrOutputParser
PAYROLL_QA_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Answer the user query given the provided payroll data in json form. Use the provided schema to understand the payroll data structure. If you cannot answer the question with the provided information, please respond with 'I don't know" without any preamble, explanation, or additional text
SCHEMA:
{schema}
PAYROLL DATA
{data}
PAYROLL DATA:
{data}
User Question: {question}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
payroll_qa_prompt = PromptTemplate(
template=PAYROLL_QA_PROMPT, input_variables=["question", "data", "schema"]
)
payroll_qa_chain = payroll_qa_prompt | llm | StrOutputParser()
result = fiter_extraction_chain.invoke({"question":"What is my salary on jan 2024 ?"})
result
api_result = dummy_payroll_api_call(1234, result["month"], result["year"])
api_result
payroll_qa_chain.invoke({"question":"What is my salary on jan 2024 ?", "data":api_result, "schema":payroll_schema})
from typing_extensions import TypedDict
from typing import List
### State
class AgentState(TypedDict):
question : str
answer : str
documents : List[str]
import logging as log
def route_question(state):
"""
Route question to payroll_agent or policy_agent to retrieve reevant data
Args:
state (dict): The current graph state
Returns:
str: Next node to call
"""
question = state["question"]
result = router_chain.invoke({"question": question})
log.debug('Routing to {}....'.format(result["agent"]))
if result['agent'] == 'payroll_agent':
log.debug('Routing to {}....'.format(result["agent"]))
return "payroll_agent"
elif result['agent'] == 'policy_agent':
log.debug('Routing to {}....'.format(result["agent"]))
return "policy_agent"
state = AgentState(question="What is my salary on jan 2024 ?", answer="", documents=None)
route_question(state)
from langchain.schema import Document
def retrieve_policy(state):
"""
Retrieve policy documents from vectorstore
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
log.debug("Retreiving policy documents.......")
question = state["question"]
documents = compression_retriever.invoke(question)
return {"documents": documents, "question": question}
state = AgentState(question="What is leave policy?", answer="", documents=None)
retrieve_policy(state)
def generate_answer(state):
"""
Generate answer using retrieved data
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
log.debug("Generating answer.......")
question = state["question"]
documents = state["documents"]
answer = response_chain.invoke({"context": documents, "question": question})
return {"documents": documents, "question": question, "answer": answer}
state = AgentState(question="What is leave policy?", answer="", documents=[Document(page_content="According to leave policy, there are two types of leaves 1: PL 2: CL")])
generate_answer(state)
def query_payroll(state):
"""
Query payroll api to retrieve payroll data
Args:
state (dict): The current graph state
Returns:
state (dict): Updated state with retrived payroll data
"""
question = state["question"]
payroll_query_filters = fiter_extraction_chain.invoke({"question":question})
payroll_api_query_results = dummy_payroll_api_call(1234, result["month"], result["year"])
context = context = 'PAYROLL DATA SCHEMA: \n {payroll_schema} \n PAYROLL DATA: {payroll_api_query_results}'.format(
payroll_schema=payroll_schema, payroll_api_query_results=payroll_api_query_results)
documents = [Document(page_content=context)]
return {"documents": documents, "question": question}
state = AgentState(question="Tell me salary for Jan 2024?", answer="", documents=None)
query_payroll(state)
from langgraph.graph import END, StateGraph
workflow = StateGraph(AgentState)
# Define the nodes
workflow.add_node("payroll_agent", query_payroll)
workflow.add_node("policy_agent", retrieve_policy)
workflow.add_node("generator_agent", generate_answer)
workflow.set_conditional_entry_point(
route_question,
{
"payroll_agent": "payroll_agent",
"policy_agent": "policy_agent",
},
)
workflow.add_edge("payroll_agent", "generator_agent")
workflow.add_edge("policy_agent", "generator_agent")
workflow.add_edge("generator_agent", END)
app = workflow.compile()
from langchain_core.runnables import chain
@chain
def sage_chain(question):
inputs = {"question": question}
return app.invoke(inputs) |