Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,8 @@ print(f"Using device: {device}")
|
|
18 |
|
19 |
# Load speech-to-text model
|
20 |
try:
|
21 |
-
speech_recognizer = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to(
|
|
|
22 |
speech_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
23 |
print("Speech recognition model loaded successfully!")
|
24 |
except Exception as e:
|
@@ -32,7 +33,7 @@ try:
|
|
32 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
33 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
34 |
tts_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
35 |
-
|
36 |
# Load speaker embeddings
|
37 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
38 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
|
@@ -44,6 +45,7 @@ except Exception as e:
|
|
44 |
tts_vocoder = None
|
45 |
speaker_embeddings = None
|
46 |
|
|
|
47 |
# Modele CNN
|
48 |
class modele_CNN(nn.Module):
|
49 |
def __init__(self, num_classes=7, dropout=0.3):
|
@@ -52,10 +54,10 @@ class modele_CNN(nn.Module):
|
|
52 |
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
53 |
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
|
54 |
self.pool = nn.MaxPool2d(2, 2)
|
55 |
-
self.fc1 = nn.Linear(64 * 1 * 62, 128)
|
56 |
self.fc2 = nn.Linear(128, num_classes)
|
57 |
self.dropout = nn.Dropout(dropout)
|
58 |
-
|
59 |
def forward(self, x):
|
60 |
x = self.pool(F.relu(self.conv1(x)))
|
61 |
x = self.pool(F.relu(self.conv2(x)))
|
@@ -63,35 +65,43 @@ class modele_CNN(nn.Module):
|
|
63 |
x = x.view(x.size(0), -1)
|
64 |
x = self.dropout(F.relu(self.fc1(x)))
|
65 |
x = self.fc2(x)
|
66 |
-
return x
|
|
|
|
|
|
|
67 |
|
68 |
-
# Audio processor
|
69 |
class AudioProcessor:
|
70 |
-
def Mel2Hz(self, mel):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
if T <= 1:
|
76 |
return np.ones(T)
|
77 |
-
return 0.54-0.46*np.cos(2*np.pi*np.arange(T)/(T-1))
|
78 |
|
79 |
def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000):
|
80 |
-
Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs/2)), nf+2)), fs,
|
81 |
-
|
82 |
-
|
|
|
83 |
return filtres
|
84 |
|
85 |
def spectrogram(self, x, T, p, Tfft):
|
86 |
-
S = []
|
87 |
-
for i in range(0, len(x)-T, p): S.append(x[i:i+T]*self.hamming(T))
|
88 |
S = np.fft.fft(S, Tfft)
|
89 |
return np.abs(S), np.angle(S)
|
90 |
-
|
91 |
def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512):
|
92 |
-
data = (data[1]-np.mean(data[1]))/np.std(data[1])
|
93 |
amp, ph = self.spectrogram(data, T, p, Tfft)
|
94 |
-
amp_f = np.log10(np.dot(amp[:, :int(Tfft/2)], filtres)+1)
|
95 |
return idct(amp_f, n=nc, norm='ortho')
|
96 |
|
97 |
def process_audio(self, audio_data, sr, audio_length=32000):
|
@@ -106,29 +116,33 @@ class AudioProcessor:
|
|
106 |
else:
|
107 |
sgn = audio_data
|
108 |
fs = sr
|
109 |
-
|
110 |
sgn = np.array(sgn, dtype=np.float32)
|
111 |
-
|
112 |
if len(sgn) > audio_length:
|
113 |
sgn = sgn[:audio_length]
|
114 |
else:
|
115 |
sgn = np.pad(sgn, (0, audio_length - len(sgn)), mode='constant')
|
116 |
-
|
117 |
filtres = self.FiltresMel(fs)
|
118 |
sgn_features = self.mfcc([fs, sgn], filtres)
|
119 |
-
|
120 |
mfcc_tensor = torch.tensor(sgn_features.T, dtype=torch.float32)
|
121 |
mfcc_tensor = mfcc_tensor.unsqueeze(0).unsqueeze(0)
|
122 |
-
|
123 |
return mfcc_tensor
|
124 |
|
|
|
|
|
125 |
def recognize_speech(audio_path):
|
126 |
if speech_recognizer is None or speech_processor is None:
|
127 |
return "Speech recognition model not available"
|
128 |
-
|
129 |
try:
|
|
|
130 |
audio_data, sr = sf.read(audio_path)
|
131 |
-
|
|
|
132 |
if sr != 16000:
|
133 |
audio_data = np.interp(
|
134 |
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
|
@@ -136,89 +150,82 @@ def recognize_speech(audio_path):
|
|
136 |
audio_data
|
137 |
)
|
138 |
sr = 16000
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
num_beams=5, # Changed from 1 to 5 for better results
|
150 |
-
early_stopping=True,
|
151 |
-
no_repeat_ngram_size=2
|
152 |
-
)
|
153 |
-
|
154 |
-
transcription = speech_processor.batch_decode(
|
155 |
-
generated_ids,
|
156 |
-
skip_special_tokens=True
|
157 |
-
)[0]
|
158 |
-
|
159 |
-
return transcription.strip()
|
160 |
-
|
161 |
except Exception as e:
|
162 |
return f"Speech recognition error: {str(e)}"
|
163 |
|
|
|
164 |
# Speech synthesis function
|
165 |
def synthesize_speech(text):
|
166 |
if tts_processor is None or tts_model is None or tts_vocoder is None or speaker_embeddings is None:
|
167 |
return None
|
168 |
-
|
169 |
try:
|
170 |
# Preprocess text
|
171 |
inputs = tts_processor(text=text, return_tensors="pt").to(device)
|
172 |
-
|
173 |
# Generate speech with speaker embeddings
|
174 |
spectrogram = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
175 |
-
|
176 |
# Convert to waveform
|
177 |
with torch.no_grad():
|
178 |
speech = tts_vocoder(spectrogram)
|
179 |
-
|
180 |
# Convert to numpy array and normalize
|
181 |
speech = speech.cpu().numpy()
|
182 |
speech = speech / np.max(np.abs(speech))
|
183 |
-
|
184 |
return (16000, speech.squeeze())
|
185 |
except Exception as e:
|
186 |
print(f"Speech synthesis error: {str(e)}")
|
187 |
return None
|
188 |
|
|
|
189 |
# Fonction prédiction
|
190 |
def predict_speaker(audio, model, processor):
|
191 |
if audio is None:
|
192 |
-
return "Aucun audio détecté.", None, None
|
193 |
-
|
194 |
try:
|
195 |
audio_data, sr = sf.read(audio)
|
|
|
|
|
196 |
input_tensor = processor.process_audio(audio_data, sr)
|
197 |
-
|
198 |
device = next(model.parameters()).device
|
199 |
input_tensor = input_tensor.to(device)
|
200 |
-
|
201 |
with torch.no_grad():
|
202 |
output = model(input_tensor)
|
203 |
print(output)
|
204 |
probabilities = F.softmax(output, dim=1)
|
205 |
confidence, predicted_class = torch.max(probabilities, 1)
|
206 |
-
|
207 |
speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"]
|
208 |
predicted_speaker = speakers[predicted_class.item()]
|
209 |
-
|
210 |
-
result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item()*100:.2f}%)"
|
211 |
-
|
212 |
probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())}
|
213 |
-
|
214 |
# Recognize speech
|
215 |
recognized_text = recognize_speech(audio)
|
216 |
-
|
217 |
-
return result, probs_dict, recognized_text,predicted_speaker
|
218 |
-
|
219 |
except Exception as e:
|
220 |
return f"Erreur : {str(e)}", None, None
|
221 |
|
|
|
222 |
# Charger modèle
|
223 |
def load_model(model_id="nareauow/my_speech_recognition", model_filename="model_3.pth"):
|
224 |
try:
|
@@ -233,14 +240,15 @@ def load_model(model_id="nareauow/my_speech_recognition", model_filename="model_
|
|
233 |
print(f"Erreur de chargement: {e}")
|
234 |
return None
|
235 |
|
|
|
236 |
# Gradio Interface
|
237 |
def create_interface():
|
238 |
processor = AudioProcessor()
|
239 |
-
|
240 |
with gr.Blocks(title="Reconnaissance de Locuteur") as interface:
|
241 |
gr.Markdown("# 🗣️ Reconnaissance de Locuteur")
|
242 |
gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.")
|
243 |
-
|
244 |
with gr.Row():
|
245 |
with gr.Column():
|
246 |
model_selector = gr.Dropdown(
|
@@ -255,11 +263,11 @@ def create_interface():
|
|
255 |
plot_output = gr.Plot(label="Confiance par locuteur")
|
256 |
recognized_text = gr.Textbox(label="Texte reconnu")
|
257 |
audio_output = gr.Audio(label="Synthèse vocale", type="numpy")
|
258 |
-
|
259 |
def recognize(audio, selected_model):
|
260 |
model = load_model(model_filename=selected_model)
|
261 |
-
res, probs, text,locuteur = predict_speaker(audio, model, processor)
|
262 |
-
|
263 |
# Generate plot
|
264 |
fig = None
|
265 |
if probs:
|
@@ -269,28 +277,29 @@ def create_interface():
|
|
269 |
ax.set_ylabel("Confiance")
|
270 |
ax.set_xlabel("Locuteurs")
|
271 |
plt.xticks(rotation=45)
|
272 |
-
|
273 |
# Generate speech synthesis if text was recognized
|
274 |
synth_audio = None
|
275 |
if text and "error" not in text.lower():
|
276 |
synth_text = f"{locuteur} said : {text}"
|
277 |
synth_audio = synthesize_speech(synth_text)
|
278 |
-
|
279 |
return res, fig, text, synth_audio
|
280 |
-
|
281 |
-
record_btn.click(fn=recognize,
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
gr.Markdown("""### Comment utiliser ?
|
286 |
- Choisissez le modèle.
|
287 |
- Cliquez sur pour enregistrer votre voix.
|
288 |
- Cliquez sur **Reconnaître** pour obtenir la prédiction.
|
289 |
""")
|
290 |
-
|
291 |
return interface
|
292 |
|
|
|
293 |
# Lancer
|
294 |
if __name__ == "__main__":
|
295 |
app = create_interface()
|
296 |
-
app.launch()
|
|
|
18 |
|
19 |
# Load speech-to-text model
|
20 |
try:
|
21 |
+
speech_recognizer = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to(
|
22 |
+
device)
|
23 |
speech_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
24 |
print("Speech recognition model loaded successfully!")
|
25 |
except Exception as e:
|
|
|
33 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
34 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
35 |
tts_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
36 |
+
|
37 |
# Load speaker embeddings
|
38 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
39 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
|
|
|
45 |
tts_vocoder = None
|
46 |
speaker_embeddings = None
|
47 |
|
48 |
+
|
49 |
# Modele CNN
|
50 |
class modele_CNN(nn.Module):
|
51 |
def __init__(self, num_classes=7, dropout=0.3):
|
|
|
54 |
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
55 |
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
|
56 |
self.pool = nn.MaxPool2d(2, 2)
|
57 |
+
self.fc1 = nn.Linear(64 * 1 * 62, 128)
|
58 |
self.fc2 = nn.Linear(128, num_classes)
|
59 |
self.dropout = nn.Dropout(dropout)
|
60 |
+
|
61 |
def forward(self, x):
|
62 |
x = self.pool(F.relu(self.conv1(x)))
|
63 |
x = self.pool(F.relu(self.conv2(x)))
|
|
|
65 |
x = x.view(x.size(0), -1)
|
66 |
x = self.dropout(F.relu(self.fc1(x)))
|
67 |
x = self.fc2(x)
|
68 |
+
return x
|
69 |
+
|
70 |
+
# Audio processor
|
71 |
+
|
72 |
|
|
|
73 |
class AudioProcessor:
|
74 |
+
def Mel2Hz(self, mel):
|
75 |
+
return 700 * (np.power(10, mel / 2595) - 1)
|
76 |
+
|
77 |
+
def Hz2Mel(self, freq):
|
78 |
+
return 2595 * np.log10(1 + freq / 700)
|
79 |
+
|
80 |
+
def Hz2Ind(self, freq, fs, Tfft):
|
81 |
+
return (freq * Tfft / fs).astype(int)
|
82 |
+
|
83 |
+
def hamming(self, T):
|
84 |
if T <= 1:
|
85 |
return np.ones(T)
|
86 |
+
return 0.54 - 0.46 * np.cos(2 * np.pi * np.arange(T) / (T - 1))
|
87 |
|
88 |
def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000):
|
89 |
+
Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs / 2)), nf + 2)), fs,
|
90 |
+
Tfft)
|
91 |
+
filtres = np.zeros((int(Tfft / 2), nf))
|
92 |
+
for i in range(nf): filtres[Indices[i]:Indices[i + 2], i] = self.hamming(Indices[i + 2] - Indices[i])
|
93 |
return filtres
|
94 |
|
95 |
def spectrogram(self, x, T, p, Tfft):
|
96 |
+
S = []
|
97 |
+
for i in range(0, len(x) - T, p): S.append(x[i:i + T] * self.hamming(T))
|
98 |
S = np.fft.fft(S, Tfft)
|
99 |
return np.abs(S), np.angle(S)
|
100 |
+
|
101 |
def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512):
|
102 |
+
data = (data[1] - np.mean(data[1])) / np.std(data[1])
|
103 |
amp, ph = self.spectrogram(data, T, p, Tfft)
|
104 |
+
amp_f = np.log10(np.dot(amp[:, :int(Tfft / 2)], filtres) + 1)
|
105 |
return idct(amp_f, n=nc, norm='ortho')
|
106 |
|
107 |
def process_audio(self, audio_data, sr, audio_length=32000):
|
|
|
116 |
else:
|
117 |
sgn = audio_data
|
118 |
fs = sr
|
119 |
+
|
120 |
sgn = np.array(sgn, dtype=np.float32)
|
121 |
+
|
122 |
if len(sgn) > audio_length:
|
123 |
sgn = sgn[:audio_length]
|
124 |
else:
|
125 |
sgn = np.pad(sgn, (0, audio_length - len(sgn)), mode='constant')
|
126 |
+
|
127 |
filtres = self.FiltresMel(fs)
|
128 |
sgn_features = self.mfcc([fs, sgn], filtres)
|
129 |
+
|
130 |
mfcc_tensor = torch.tensor(sgn_features.T, dtype=torch.float32)
|
131 |
mfcc_tensor = mfcc_tensor.unsqueeze(0).unsqueeze(0)
|
132 |
+
|
133 |
return mfcc_tensor
|
134 |
|
135 |
+
|
136 |
+
# Speech recognition function
|
137 |
def recognize_speech(audio_path):
|
138 |
if speech_recognizer is None or speech_processor is None:
|
139 |
return "Speech recognition model not available"
|
140 |
+
|
141 |
try:
|
142 |
+
# Read audio file
|
143 |
audio_data, sr = sf.read(audio_path)
|
144 |
+
|
145 |
+
# Resample to 16kHz if needed
|
146 |
if sr != 16000:
|
147 |
audio_data = np.interp(
|
148 |
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
|
|
|
150 |
audio_data
|
151 |
)
|
152 |
sr = 16000
|
153 |
+
|
154 |
+
# Process audio
|
155 |
+
inputs = speech_processor(audio_data, sampling_rate=sr, return_tensors="pt")
|
156 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
157 |
+
|
158 |
+
# Generate transcription
|
159 |
+
generated_ids = speech_recognizer.generate(**inputs)
|
160 |
+
transcription = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
161 |
+
|
162 |
+
return transcription
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
except Exception as e:
|
164 |
return f"Speech recognition error: {str(e)}"
|
165 |
|
166 |
+
|
167 |
# Speech synthesis function
|
168 |
def synthesize_speech(text):
|
169 |
if tts_processor is None or tts_model is None or tts_vocoder is None or speaker_embeddings is None:
|
170 |
return None
|
171 |
+
|
172 |
try:
|
173 |
# Preprocess text
|
174 |
inputs = tts_processor(text=text, return_tensors="pt").to(device)
|
175 |
+
|
176 |
# Generate speech with speaker embeddings
|
177 |
spectrogram = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
178 |
+
|
179 |
# Convert to waveform
|
180 |
with torch.no_grad():
|
181 |
speech = tts_vocoder(spectrogram)
|
182 |
+
|
183 |
# Convert to numpy array and normalize
|
184 |
speech = speech.cpu().numpy()
|
185 |
speech = speech / np.max(np.abs(speech))
|
186 |
+
|
187 |
return (16000, speech.squeeze())
|
188 |
except Exception as e:
|
189 |
print(f"Speech synthesis error: {str(e)}")
|
190 |
return None
|
191 |
|
192 |
+
|
193 |
# Fonction prédiction
|
194 |
def predict_speaker(audio, model, processor):
|
195 |
if audio is None:
|
196 |
+
return "Aucun audio détecté.", None, None,None
|
197 |
+
|
198 |
try:
|
199 |
audio_data, sr = sf.read(audio)
|
200 |
+
|
201 |
+
|
202 |
input_tensor = processor.process_audio(audio_data, sr)
|
203 |
+
|
204 |
device = next(model.parameters()).device
|
205 |
input_tensor = input_tensor.to(device)
|
206 |
+
|
207 |
with torch.no_grad():
|
208 |
output = model(input_tensor)
|
209 |
print(output)
|
210 |
probabilities = F.softmax(output, dim=1)
|
211 |
confidence, predicted_class = torch.max(probabilities, 1)
|
212 |
+
|
213 |
speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"]
|
214 |
predicted_speaker = speakers[predicted_class.item()]
|
215 |
+
|
216 |
+
result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item() * 100:.2f}%)"
|
217 |
+
|
218 |
probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())}
|
219 |
+
|
220 |
# Recognize speech
|
221 |
recognized_text = recognize_speech(audio)
|
222 |
+
|
223 |
+
return result, probs_dict, recognized_text, predicted_speaker
|
224 |
+
|
225 |
except Exception as e:
|
226 |
return f"Erreur : {str(e)}", None, None
|
227 |
|
228 |
+
|
229 |
# Charger modèle
|
230 |
def load_model(model_id="nareauow/my_speech_recognition", model_filename="model_3.pth"):
|
231 |
try:
|
|
|
240 |
print(f"Erreur de chargement: {e}")
|
241 |
return None
|
242 |
|
243 |
+
|
244 |
# Gradio Interface
|
245 |
def create_interface():
|
246 |
processor = AudioProcessor()
|
247 |
+
|
248 |
with gr.Blocks(title="Reconnaissance de Locuteur") as interface:
|
249 |
gr.Markdown("# 🗣️ Reconnaissance de Locuteur")
|
250 |
gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.")
|
251 |
+
|
252 |
with gr.Row():
|
253 |
with gr.Column():
|
254 |
model_selector = gr.Dropdown(
|
|
|
263 |
plot_output = gr.Plot(label="Confiance par locuteur")
|
264 |
recognized_text = gr.Textbox(label="Texte reconnu")
|
265 |
audio_output = gr.Audio(label="Synthèse vocale", type="numpy")
|
266 |
+
|
267 |
def recognize(audio, selected_model):
|
268 |
model = load_model(model_filename=selected_model)
|
269 |
+
res, probs, text, locuteur = predict_speaker(audio, model, processor)
|
270 |
+
|
271 |
# Generate plot
|
272 |
fig = None
|
273 |
if probs:
|
|
|
277 |
ax.set_ylabel("Confiance")
|
278 |
ax.set_xlabel("Locuteurs")
|
279 |
plt.xticks(rotation=45)
|
280 |
+
|
281 |
# Generate speech synthesis if text was recognized
|
282 |
synth_audio = None
|
283 |
if text and "error" not in text.lower():
|
284 |
synth_text = f"{locuteur} said : {text}"
|
285 |
synth_audio = synthesize_speech(synth_text)
|
286 |
+
|
287 |
return res, fig, text, synth_audio
|
288 |
+
|
289 |
+
record_btn.click(fn=recognize,
|
290 |
+
inputs=[audio_input, model_selector],
|
291 |
+
outputs=[result_text, plot_output, recognized_text, audio_output])
|
292 |
+
|
293 |
gr.Markdown("""### Comment utiliser ?
|
294 |
- Choisissez le modèle.
|
295 |
- Cliquez sur pour enregistrer votre voix.
|
296 |
- Cliquez sur **Reconnaître** pour obtenir la prédiction.
|
297 |
""")
|
298 |
+
|
299 |
return interface
|
300 |
|
301 |
+
|
302 |
# Lancer
|
303 |
if __name__ == "__main__":
|
304 |
app = create_interface()
|
305 |
+
app.launch(share=True)
|