File size: 21,698 Bytes
d66c48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import librosa
import torch
import torchaudio
import accelerate
import safetensors
import numpy as np
import yaml
from IPython.display import display, Audio

from models.vc.flow_matching_transformer.fmt_model import FlowMatchingTransformer
from models.vc.autoregressive_transformer.ar_model import AutoregressiveTransformer
from models.codec.kmeans.repcodec_model import RepCodec
from models.codec.vevo.vevo_repcodec import VevoRepCodec
from models.codec.melvqgan.melspec import MelSpectrogram
from models.codec.amphion_codec.vocos import Vocos

from utils.util import load_config


def g2p_(text, language):
    from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p

    if language in ["zh", "en"]:
        return chn_eng_g2p(text)
    else:
        return g2p(text, sentence=None, language=language)


def transcribe_audio(audio_path, model=None):
    if model is None:
        import whisper

        model = whisper.load_model("medium")

    result = model.transcribe(audio_path)
    return result["text"]


# Semantic Features Extractor
def build_hubert_model(device):
    bundle = torchaudio.pipelines.HUBERT_LARGE
    hubert = bundle.get_model()
    hubert.eval()
    hubert.to(device)
    return hubert


# VQ-VAE Tokenizer
def build_vqvae_model(repcodec_cfg, device):
    vqvae = RepCodec(cfg=repcodec_cfg)
    vqvae.eval()
    vqvae.to(device)
    return vqvae


# Vevo VQ-VAE Tokenizer (pkl checkpoint)
def load_vevo_vqvae_checkpoint(repcodec_cfg, device):
    with open(repcodec_cfg.config_path) as fp:
        conf = yaml.load(fp, Loader=yaml.FullLoader)
    vqvae = VevoRepCodec(**conf)
    vqvae.quantizer.initial()
    vqvae.eval()

    pretrained_path = repcodec_cfg.pretrained_path
    if ".pkl" in pretrained_path:
        # Vevo paper
        vqvae.load_state_dict(
            torch.load(pretrained_path, map_location="cpu")["model"]["repcodec"]
        )
    elif ".safetensors" in pretrained_path:
        # Re-trained vevovq
        safetensors.torch.load_model(vqvae, pretrained_path)

    vqvae.to(device)
    return vqvae


# Autoregressive Transformer
def build_ar_model(cfg, device):
    model = AutoregressiveTransformer(cfg=cfg.model.autoregressive_transformer)
    model.eval()
    model.to(device)
    return model


# Flow Matching Transformer
def build_fmt_model(cfg, device):
    model = FlowMatchingTransformer(cfg=cfg.model.flow_matching_transformer)
    model.eval()
    model.to(device)
    return model


# Melspectrogram Extractor
def build_mel_model(cfg, device):
    mel_model = MelSpectrogram(
        sampling_rate=cfg.preprocess.sample_rate,
        n_fft=cfg.preprocess.n_fft,
        num_mels=cfg.preprocess.num_mels,
        hop_size=cfg.preprocess.hop_size,
        win_size=cfg.preprocess.win_size,
        fmin=cfg.preprocess.fmin,
        fmax=cfg.preprocess.fmax,
    )
    mel_model.eval()
    mel_model.to(device)
    return mel_model


# Vocoder
def build_vocoder_model(cfg, device):
    vocoder_model = Vocos(cfg=cfg.model.vocos)
    vocoder_model.eval()
    vocoder_model.to(device)
    return vocoder_model


def load_checkpoint(build_model_func, cfg, ckpt_path, device):
    model = build_model_func(cfg, device)
    accelerate.load_checkpoint_and_dispatch(model, ckpt_path)
    return model


def count_parameters(model):
    total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    if total_params < 1e6:
        return f"{total_params} params"  # Parameters
    elif total_params < 1e9:
        return f"{total_params / 1e6:.2f} M"  # Millions
    else:
        return f"{total_params / 1e9:.2f} B"  # Billions


def load_wav(wav_path, device):
    speech = librosa.load(wav_path, sr=24000)[0]
    speech_tensor = torch.tensor(speech).unsqueeze(0).to(device)
    speech16k = torchaudio.functional.resample(speech_tensor, 24000, 16000)
    return speech, speech_tensor, speech16k


def display_audio_in_notebook(wav, rate=24000):
    display(Audio(wav, rate=rate))


def save_audio(

    waveform, sr=24000, output_path=None, target_sample_rate=None, target_db=-25.0

):
    """

    waveform: [1, T]

    """
    if target_sample_rate is not None and sr != target_sample_rate:
        resampler = torchaudio.transforms.Resample(
            orig_freq=sr, new_freq=target_sample_rate
        )
        waveform = resampler(waveform)
    else:
        target_sample_rate = sr

    rms = torch.sqrt(torch.mean(waveform**2))
    current_db = 20 * torch.log10(rms + 1e-9)

    gain = target_db - current_db
    normalized_waveform = waveform * (10 ** (gain / 20))

    torchaudio.save(output_path, normalized_waveform, target_sample_rate)
    return output_path


class VevoInferencePipeline:
    def __init__(

        self,

        content_tokenizer_ckpt_path=None,

        content_style_tokenizer_ckpt_path=None,

        ar_cfg_path=None,

        ar_ckpt_path=None,

        fmt_cfg_path=None,

        fmt_ckpt_path=None,

        vocoder_cfg_path=None,

        vocoder_ckpt_path=None,

        device=None,

    ):
        self.device = device

        if ar_cfg_path is not None and ar_ckpt_path is not None:
            self.ar_cfg = load_config(ar_cfg_path)
            self.ar_model = load_checkpoint(
                build_ar_model, self.ar_cfg, ar_ckpt_path, device
            )
            print(f"#Params of AR model: {count_parameters(self.ar_model)}")
        else:
            self.ar_cfg = None
            self.ar_model = None

        self.fmt_cfg = load_config(fmt_cfg_path)
        self.fmt_model = load_checkpoint(
            build_fmt_model, self.fmt_cfg, fmt_ckpt_path, device
        )
        print(f"#Params of Flow Matching model: {count_parameters(self.fmt_model)}")

        self.vocoder_cfg = load_config(vocoder_cfg_path)
        self.mel_model = build_mel_model(self.vocoder_cfg, device)
        self.vocoder_model = load_checkpoint(
            build_vocoder_model, self.vocoder_cfg, vocoder_ckpt_path, device
        )
        print(f"#Params of Vocoder model: {count_parameters(self.vocoder_model)}")

        self.content_tokenizer_ckpt_path = content_tokenizer_ckpt_path
        self.content_style_tokenizer_ckpt_path = content_style_tokenizer_ckpt_path
        self.init_vqvae_tokenizer()

    def init_vqvae_tokenizer(self):
        ## HuBERT features extraction ##
        self.hubert_model = build_hubert_model(self.device)
        stat = np.load(self.fmt_cfg.model.representation_stat_mean_var_path)
        self.hubert_feat_norm_mean = torch.tensor(stat["mean"])
        self.hubert_feat_norm_std = torch.tensor(stat["std"])

        ## Content Tokenizer ##
        if self.ar_model is not None and "input_repcodec" in self.ar_cfg.model:
            assert self.ar_cfg.model.vc_input_token_type == "hubert_vevo_codec"

            ckpt_path = getattr(
                self.ar_cfg.model.input_repcodec,
                "pretrained_path",
                self.content_tokenizer_ckpt_path,
            )
            self.ar_cfg.model.input_repcodec.pretrained_path = ckpt_path
            self.content_tokenizer = load_vevo_vqvae_checkpoint(
                self.ar_cfg.model.input_repcodec,
                self.device,
            )

            print(
                "#Params of Content Tokenizer: {}".format(
                    count_parameters(self.content_tokenizer)
                )
            )

        ## Content-Style Tokenizer ##
        ckpt_path = getattr(
            self.fmt_cfg.model.repcodec,
            "pretrained_path",
            self.content_style_tokenizer_ckpt_path,
        )
        self.content_style_tokenizer = load_checkpoint(
            build_vqvae_model,
            self.fmt_cfg.model.repcodec,
            ckpt_path,
            self.device,
        )
        print(
            "#Params of Content-Style Tokenizer: {}".format(
                count_parameters(self.content_style_tokenizer)
            )
        )

    @torch.no_grad()
    def extract_mel_feature(self, speech):
        mel_feature = self.mel_model(speech)  # (B, d, T)
        mel_feature = mel_feature.transpose(1, 2)
        mel_feature = (mel_feature - self.vocoder_cfg.preprocess.mel_mean) / math.sqrt(
            self.vocoder_cfg.preprocess.mel_var
        )
        return mel_feature

    @torch.no_grad()
    def extract_prompt_mel_feature(self, speech):
        """

        This is for the global encoder of AR model

        """
        if not hasattr(self, "prompt_mel_model"):
            self.prompt_mel_model = build_mel_model(self.ar_cfg, self.device)

        mel_feature = self.prompt_mel_model(speech)  # (B, d, T)
        mel_feature = mel_feature.transpose(1, 2)
        mel_feature = (mel_feature - self.ar_cfg.preprocess.mel_mean) / math.sqrt(
            self.ar_cfg.preprocess.mel_var
        )
        return mel_feature

    @torch.no_grad()
    def extract_hubert_feature(self, wavs, wav_lens=None, output_layer=18):
        """

        Args:

            wavs: [B, T]

            wav_lens: [B,]

        Returns:

            feats: [B, T, D]

            feat_lengths: [B]

        """
        if wav_lens is None:
            wav_lens = torch.tensor([wavs.shape[1]] * wavs.shape[0]).to(wavs).int()

        feats, feat_lengths = self.hubert_model.extract_features(
            wavs, lengths=wav_lens, num_layers=output_layer
        )
        feats = feats[-1]
        return feats, feat_lengths

    def duration_reduction_func(self, token_seq, n_gram=1):
        """

        Args:

            token_seq: (T,)

        Returns:

            reduced_token_seq: (T')

            reduced_token_seq_len: T'

        """
        n_gram_seq = token_seq.unfold(0, n_gram, 1)
        mask = torch.all(n_gram_seq[1:] != n_gram_seq[:-1], dim=1)
        reduced_token_seq = torch.cat(
            (n_gram_seq[0, :n_gram], n_gram_seq[1:, -1][mask])
        )
        return reduced_token_seq, len(reduced_token_seq)

    @torch.no_grad()
    def extract_hubert_codec(

        self,

        vqvae_model,

        wavs,

        wav_lens=None,

        output_layer=18,

        token_type="hubert_codec",

        duration_reduction=False,

        duration_reduction_n_gram=1,

    ):
        """

        Args:

            wavs: [B, T]

            wav_lens: [B,]

        Returns:

            codecs: [B, T]

            codec_masks: [B, T]

        """
        # Extract features and normalize
        feats, feat_lengths = self.extract_hubert_feature(wavs, wav_lens, output_layer)

        if token_type == "hubert_codec":
            feats = (
                feats - self.hubert_feat_norm_mean.to(feats)
            ) / self.hubert_feat_norm_std.to(feats)
            codecs, _ = vqvae_model.quantize(feats)  # (B, T)
        elif token_type == "hubert_vevo_codec":
            x = vqvae_model.encoder(feats.transpose(1, 2))
            z = vqvae_model.projector(x)
            _, idx = vqvae_model.quantizer.codebook.forward_index(z.transpose(2, 1))
            codecs = idx[0]  # (B, T)
        else:
            raise ValueError("Invalid token_type")

        if not duration_reduction:
            T = codecs.shape[1]
            arange_tensor = torch.arange(T).expand(codecs.shape[0], T).to(codecs)
            codec_masks = (
                arange_tensor < feat_lengths.unsqueeze(-1)
            ).int()  # 1 means valid
            return codecs, codec_masks

        else:
            reduced_codecs = []
            reduced_masks = []

            for i, token_seq_len in enumerate(feat_lengths):
                token_seq = codecs[i, :token_seq_len]
                reduced_token_seq, reduced_token_seq_len = self.duration_reduction_func(
                    token_seq, n_gram=duration_reduction_n_gram
                )

                reduced_codecs.append(reduced_token_seq)
                reduced_masks.append(
                    torch.ones(reduced_token_seq_len, dtype=torch.int).to(codecs)
                )

            reduced_codecs = torch.nn.utils.rnn.pad_sequence(
                reduced_codecs, batch_first=True, padding_value=0
            )
            reduced_masks = torch.nn.utils.rnn.pad_sequence(
                reduced_masks, batch_first=True, padding_value=0
            )
            return reduced_codecs, reduced_masks

    def random_mask_codec(self, codecs, codec_masks, ratio, mask_value):
        """

        Args:

            codecs: [B, T]

            codec_masks: [B, T], 0 means not to mask

            ratio: float

            mask_value: int

        Returns:

            masked_codecs: [B, T]

        """
        rand_mask = (torch.rand_like(codecs.float(), device=codecs.device) < ratio) & (
            codec_masks == 1
        )
        masked_codecs = codecs.masked_fill(rand_mask, mask_value)
        return masked_codecs

    def inference_ar_and_fm(

        self,

        src_wav_path,

        src_text,

        style_ref_wav_path,

        timbre_ref_wav_path,

        style_ref_wav_text=None,

        src_text_language=None,

        style_ref_wav_text_language=None,

        vc_input_mask_ratio=-1,

        use_global_guided_inference=False,

        flow_matching_steps=32,

        display_audio=False,

    ):
        assert self.ar_model is not None

        if src_wav_path is None:
            # TTS
            task = "tts"
            assert src_text is not None

            if src_text_language is None:
                src_text_language = "zh"
            if style_ref_wav_text_language is None:
                style_ref_wav_text_language = "zh"

            if display_audio:
                print("-" * 20)
                print("Source Text: [{}]".format(src_text))

        else:
            # VC
            task = "vc"
            assert src_text is None
            src_speech, src_speech24k, src_speech16k = load_wav(
                src_wav_path, self.device
            )

            if display_audio:
                print("-" * 20)
                print("Source audio:")
                display_audio_in_notebook(src_speech, rate=24000)

        style_ref_speech, style_ref_speech24k, style_ref_speech16k = load_wav(
            style_ref_wav_path, self.device
        )
        timbre_ref_speech, timbre_ref_speech24k, timbre_ref_speech16k = load_wav(
            timbre_ref_wav_path, self.device
        )

        if display_audio:
            if style_ref_wav_path == timbre_ref_wav_path:
                print("Both Style and Timbre Reference audio:")
                display_audio_in_notebook(style_ref_speech, rate=24000)
            else:
                print("Style Reference audio:")
                display_audio_in_notebook(style_ref_speech, rate=24000)
                print("Timbre Reference audio:")
                display_audio_in_notebook(timbre_ref_speech, rate=24000)
                print("-" * 20)

        ## AR ##
        if task == "tts":
            ar_input_ids = g2p_(src_text, src_text_language)[1]
            ar_input_ids = torch.tensor([ar_input_ids], dtype=torch.long).to(
                self.device
            )

            if display_audio:
                print("Src text input_ids:", ar_input_ids.shape)

            if not use_global_guided_inference:
                assert style_ref_wav_text is not None
                style_ref_input_ids = g2p_(
                    style_ref_wav_text, style_ref_wav_text_language
                )[1]
                style_ref_input_ids = torch.tensor(
                    [style_ref_input_ids], dtype=torch.long
                ).to(self.device)
                ar_input_ids = torch.cat([style_ref_input_ids, ar_input_ids], dim=1)

                if display_audio:
                    print("AR input_ids:", ar_input_ids.shape)

        elif task == "vc":
            if not use_global_guided_inference:
                src_speech16k = torch.cat([style_ref_speech16k, src_speech16k], dim=1)

            # [1, T]
            ar_input_ids, _ = self.extract_hubert_codec(
                self.content_tokenizer,
                src_speech16k,
                token_type=self.ar_cfg.model.vc_input_token_type,
                duration_reduction=True,
                duration_reduction_n_gram=getattr(
                    self.ar_cfg.model, "vc_input_reduced_n_gram", 1
                ),
            )

            if vc_input_mask_ratio > 0:
                ar_input_masks = torch.ones_like(
                    ar_input_ids, dtype=torch.int, device=self.device
                )
                if not use_global_guided_inference:
                    total_len = ar_input_ids.shape[1]
                    style_ref_ratio = (
                        style_ref_speech16k.shape[1] / src_speech16k.shape[1]
                    )
                    ar_input_masks[:, : int(total_len * style_ref_ratio)] = 0

                ar_input_ids = self.random_mask_codec(
                    codecs=ar_input_ids,
                    codec_masks=ar_input_masks,
                    ratio=vc_input_mask_ratio,
                    mask_value=self.ar_cfg.model.vc_input_vocab_size,
                )

            if self.ar_cfg.model.train_both_vc_and_tts:
                # [Important] When traing both VC and TTS, the VC's input_ids should be shifted, since Llama use a unified codebook
                ar_input_ids += self.ar_cfg.model.tts_input_vocab_size

            if display_audio:
                print("AR input_ids:", ar_input_ids.shape)

        if use_global_guided_inference:
            prompt_output_ids = None
        else:
            prompt_output_ids, _ = self.extract_hubert_codec(
                self.content_style_tokenizer,
                style_ref_speech16k,
                duration_reduction=False,
            )
            if display_audio:
                print("Prompt output_ids:", prompt_output_ids.shape)

        # [1, T]
        predicted_hubert_codecs = self.ar_model.generate(
            input_ids=ar_input_ids,
            prompt_mels=self.extract_prompt_mel_feature(style_ref_speech16k),
            prompt_output_ids=prompt_output_ids,
        )

        ## Diffusion ##
        timbre_ref_hubert_codecs, _ = self.extract_hubert_codec(
            self.content_style_tokenizer, timbre_ref_speech16k, duration_reduction=False
        )
        diffusion_input_codecs = torch.cat(
            [timbre_ref_hubert_codecs, predicted_hubert_codecs], dim=1
        )

        # [1, T, D]
        predict_mel_feat = self.fmt_model.reverse_diffusion(
            cond=self.fmt_model.cond_emb(diffusion_input_codecs),
            prompt=self.extract_mel_feature(timbre_ref_speech24k),
            n_timesteps=flow_matching_steps,
        )

        ## Vocoder and Display ##
        # [1, 1, T] -> [1, T]
        synthesized_audio = (
            self.vocoder_model(predict_mel_feat.transpose(1, 2)).detach().cpu()
        )[0]
        if display_audio:
            # [T]
            audio = synthesized_audio.numpy()[0]
            display_audio_in_notebook(audio, rate=24000)

        return synthesized_audio

    def inference_fm(

        self,

        src_wav_path,

        timbre_ref_wav_path,

        flow_matching_steps=32,

        display_audio=False,

    ):
        src_speech, src_speech24k, src_speech16k = load_wav(src_wav_path, self.device)
        timbre_ref_speech, timbre_ref_speech24k, timbre_ref_speech16k = load_wav(
            timbre_ref_wav_path, self.device
        )

        if display_audio:
            print("-" * 20)
            if src_wav_path == timbre_ref_wav_path:
                print("Audio:")
                display_audio_in_notebook(src_wav_path, rate=24000)
            else:
                print("Source audio:")
                display_audio_in_notebook(src_speech, rate=24000)
                print("Timbre Reference audio:")
                display_audio_in_notebook(timbre_ref_speech, rate=24000)
                print("-" * 20)

        ## Diffusion ##
        src_hubert_codecs, _ = self.extract_hubert_codec(
            self.content_style_tokenizer, src_speech16k, duration_reduction=False
        )
        timbre_ref_hubert_codecs, _ = self.extract_hubert_codec(
            self.content_style_tokenizer, timbre_ref_speech16k, duration_reduction=False
        )
        diffusion_input_codecs = torch.cat(
            [timbre_ref_hubert_codecs, src_hubert_codecs], dim=1
        )

        # [1, T, D]
        predict_mel_feat = self.fmt_model.reverse_diffusion(
            cond=self.fmt_model.cond_emb(diffusion_input_codecs),
            prompt=self.extract_mel_feature(timbre_ref_speech24k),
            n_timesteps=flow_matching_steps,
        )

        ## Vocoder and Display ##
        # [1, 1, T] -> [1, T]
        synthesized_audio = (
            self.vocoder_model(predict_mel_feat.transpose(1, 2)).detach().cpu()
        )[0]
        if display_audio:
            # [T]
            audio = synthesized_audio.numpy()[0]
            display_audio_in_notebook(audio, rate=24000)

        return synthesized_audio