naman1102's picture
Update app.py
e073c39
raw
history blame
21.2 kB
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated
from langgraph.graph import Graph, StateGraph
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
# -------------------------
# Environment & constants
# -------------------------
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize HF client
client = InferenceClient(token=HF_TOKEN)
# -------------------------
# Utility helpers
# -------------------------
def override(_, new):
return new
def merge_dicts(old: Dict, new: Dict) -> Dict:
"""Merge two dictionaries, with *new* values taking precedence."""
return {**old, **new}
def tighten(q: str) -> str:
"""
Strip long GAIA questions down to quoted phrases and capitalised words.
Falls back to the original text if we strip too much.
"""
quoted = re.findall(r'"([^"]+)"', q)
caps = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
short = " ".join(quoted + caps)
return short or q
# -------------------------
# Multimodal helpers
# -------------------------
def image_qa_bytes(data: bytes, prompt: str) -> str:
"""Query MiniGPT-4-V for image-based QA using bytes."""
headers = {"Content-Type": "application/octet-stream"}
return client.post("Vision-CAIR/MiniGPT4-V", data=data, headers=headers)
def video_label_bytes(data: bytes) -> str:
"""Get video classification using VideoMAE-Base-Short from bytes."""
headers = {"Content-Type": "application/octet-stream"}
preds = client.post(
"MCG-NJU/videomae-base-short-finetuned-ucf101",
data=data,
headers=headers
)
return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]
def sheet_answer_bytes(data: bytes, question: str) -> str:
"""Process spreadsheet data from bytes and answer questions."""
if mimetypes.guess_type("x.xlsx")[0] == "text/csv" or question.endswith(".csv"):
df = pd.read_csv(io.BytesIO(data))
else:
df = pd.read_excel(io.BytesIO(data))
numeric_cols = df.select_dtypes("number")
col = numeric_cols.max().idxmax()
row = numeric_cols[col].idxmax()
value = df.loc[row, col]
label = df.columns[col]
return f"{label}: {value}"
# -------------------------
# State definition
# -------------------------
class AgentState(TypedDict):
question: Annotated[str, override]
current_step: Annotated[str, override]
final_answer: Annotated[str, override]
history: Annotated[List[Dict[str, str]], list.__add__]
needs_search: Annotated[bool, override]
search_query: Annotated[str, override]
task_id: Annotated[str, override]
logs: Annotated[Dict[str, Any], merge_dicts]
attachment_data: Annotated[Dict[str, bytes], merge_dicts]
# -------------------------
# BasicAgent implementation
# -------------------------
class BasicAgent:
def __init__(self):
if not OPENAI_API_KEY:
raise EnvironmentError("OPENAI_API_KEY not set")
self.llm = OpenAI(api_key=OPENAI_API_KEY)
self.workflow = self._build_workflow()
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
try:
resp = self.llm.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a careful reasoning assistant."},
{"role": "user", "content": prompt},
],
temperature=0.3,
max_tokens=max_tokens,
)
return resp.choices[0].message.content.strip()
except Exception as e:
print(f"\nLLM Error: {str(e)}")
raise
def _analyze_question(self, state: AgentState) -> AgentState:
# Check for file attachments in the question
try:
question_data = json.loads(state["question"])
if "file_url" in question_data:
file_url = question_data["file_url"]
file_data = self._download_file(file_url)
state["attachment_data"] = file_data
file_type = self._detect_file_type(file_url)
if file_type == "video":
state["current_step"] = "video"
elif file_type == "image":
state["current_step"] = "image"
elif file_type in ["excel", "csv"]:
state["current_step"] = "sheet"
return state
except (json.JSONDecodeError, KeyError):
pass
except Exception as e:
print(f"\nFile handling error: {str(e)}")
state["current_step"] = "answer"
return state
# Regular text question analysis
prompt = (
"Decide if this question needs web search. Respond with a Python dict:\n"
"{\n 'needs_search': bool,\n 'search_query': str\n}\n\n"
f"Question: {state['question']}"
)
try:
raw = self._call_llm(prompt)
decision = ast.literal_eval(raw)
state["needs_search"] = bool(decision.get("needs_search", False))
state["search_query"] = decision.get("search_query", state["question"])
except Exception as e:
print(f"\nLLM Error in question analysis: {str(e)}")
state["needs_search"] = True
state["search_query"] = state["question"]
state["current_step"] = "search" if state["needs_search"] else "answer"
return state
def _detect_file_type(self, url: str) -> str:
"""Detect file type from URL extension."""
ext = url.split(".")[-1].lower()
return {
"mp4": "video",
"jpg": "image",
"jpeg": "image",
"png": "image",
"xlsx": "excel",
"csv": "csv"
}.get(ext, "unknown")
def _image_node(self, state: AgentState) -> AgentState:
"""Handle image-based questions."""
try:
if "attachment_data" in state:
answer = image_qa_bytes(state["attachment_data"], "What is shown in this image?")
state["history"].append({"step": "image", "output": answer})
else:
raise ValueError("No image data found in state")
state["current_step"] = "answer"
except Exception as e:
state["logs"]["image_error"] = str(e)
state["current_step"] = "answer"
return state
def _video_node(self, state: AgentState) -> AgentState:
"""Handle video-based questions."""
try:
if "attachment_data" in state:
label = video_label_bytes(state["attachment_data"])
state["history"].append({"step": "video", "output": label})
else:
raise ValueError("No video data found in state")
state["current_step"] = "answer"
except Exception as e:
state["logs"]["video_error"] = str(e)
state["current_step"] = "answer"
return state
def _sheet_node(self, state: AgentState) -> AgentState:
"""Handle spreadsheet-based questions."""
try:
if "attachment_data" in state:
answer = sheet_answer_bytes(state["attachment_data"], state["question"])
state["history"].append({"step": "sheet", "output": answer})
else:
raise ValueError("No spreadsheet data found in state")
state["current_step"] = "answer"
except Exception as e:
state["logs"]["sheet_error"] = str(e)
state["current_step"] = "answer"
return state
def _perform_search(self, state: AgentState) -> AgentState:
try:
results = simple_search(state["search_query"], max_results=6)
print("\nSearch Results:")
for i, s in enumerate(results, 1):
print(f"[{i}] {s[:120]}…")
if not results:
print("Warning: No search results found")
state["needs_search"] = True
else:
state["needs_search"] = False
state["history"].append({"step": "search", "results": results})
except Exception as e:
print(f"Search error: {str(e)}")
state["needs_search"] = True
state["history"].append({"step": "search", "error": str(e)})
state["current_step"] = "answer"
return state
def _generate_answer(self, state: AgentState) -> AgentState:
# Collect all relevant tool outputs
materials = []
for h in state["history"]:
if h["step"] in {"search", "video", "image", "sheet"}:
materials.append(json.dumps(h.get("output") or h.get("results"), indent=2))
search_block = "\n".join(materials) if materials else "No artefacts available."
prompt = f"""
Answer this question using ONLY the materials provided.
QUESTION:
{state['question']}
MATERIALS:
{search_block}
Write ANSWER: <answer> on its own line.
"""
try:
raw = self._call_llm(prompt, 300)
answer = raw.split("ANSWER:")[-1].strip()
if not answer:
answer = "I cannot provide a definitive answer at this time."
elif "ANSWER:" not in raw:
answer = "I cannot provide a definitive answer at this time."
state["final_answer"] = answer
state["current_step"] = "done"
except Exception as e:
print(f"\nLLM Error in answer generation: {str(e)}")
state["final_answer"] = "I encountered an error while generating the answer."
state["current_step"] = "done"
return state
def _build_workflow(self) -> Graph:
sg = StateGraph(state_schema=AgentState)
# Add nodes
sg.add_node("analyze", self._analyze_question)
sg.add_node("search", self._perform_search)
sg.add_node("answer", self._generate_answer)
sg.add_node("image", self._image_node)
sg.add_node("video", self._video_node)
sg.add_node("sheet", self._sheet_node)
# Add edges
sg.add_edge("analyze", "search")
sg.add_edge("analyze", "answer")
sg.add_edge("search", "answer")
sg.add_edge("image", "answer")
sg.add_edge("video", "answer")
sg.add_edge("sheet", "answer")
def router(state: AgentState):
return state["current_step"]
sg.add_conditional_edges("analyze", router, {
"search": "search",
"answer": "answer",
"image": "image",
"video": "video",
"sheet": "sheet"
})
sg.set_entry_point("analyze")
sg.set_finish_point("answer")
return sg.compile()
def __call__(self, question: str, task_id: str = "unknown") -> str:
state: AgentState = {
"question": question,
"current_step": "analyze",
"final_answer": "",
"history": [],
"needs_search": False,
"search_query": "",
"task_id": task_id,
"logs": {},
"attachment_data": {}
}
final_state = self.workflow.invoke(state)
return final_state["final_answer"]
def _download_file(self, url: str) -> bytes:
"""Download a file from a URL."""
r = requests.get(url, timeout=30)
r.raise_for_status()
return r.content
# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
print("Initializing agent...")
agent = BasicAgent()
print("Agent initialized successfully.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code location: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent workflow on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
print(f"\nProcessing question {task_id}: {question_text[:50]}...")
# Initialize state for this question
state: AgentState = {
"question": question_text,
"current_step": "analyze",
"final_answer": "",
"history": [],
"needs_search": False,
"search_query": "",
"task_id": task_id,
"logs": {},
"attachment_data": {}
}
# Run the workflow
final_state = agent.workflow.invoke(state)
answer = final_state["final_answer"]
# Add to results
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": answer
})
print(f"Completed question {task_id}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
column_widths=["10%", "30%", "30%", "30%"] # Adjust column widths for better display
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)