|
import os |
|
import gradio as gr |
|
import requests |
|
import ast |
|
import json |
|
import time |
|
import pandas as pd |
|
from datetime import datetime |
|
from typing import List, Dict, Any, Annotated |
|
from langgraph.graph import Graph, StateGraph |
|
from typing_extensions import TypedDict |
|
from openai import OpenAI |
|
from tools import simple_search |
|
import re |
|
|
|
|
|
|
|
|
|
|
|
def override(_, new): |
|
return new |
|
|
|
def merge_dicts(old: Dict, new: Dict) -> Dict: |
|
"""Merge two dictionaries, with *new* values taking precedence.""" |
|
return {**old, **new} |
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AgentState(TypedDict): |
|
question: Annotated[str, override] |
|
current_step: Annotated[str, override] |
|
final_answer: Annotated[str, override] |
|
history: Annotated[List[Dict[str, str]], list.__add__] |
|
needs_search: Annotated[bool, override] |
|
search_query: Annotated[str, override] |
|
task_id: Annotated[str, override] |
|
logs: Annotated[Dict[str, Any], merge_dicts] |
|
|
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
if not OPENAI_API_KEY: |
|
raise EnvironmentError("OPENAI_API_KEY not set") |
|
self.llm = OpenAI(api_key=OPENAI_API_KEY) |
|
self.workflow = self._build_workflow() |
|
|
|
|
|
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str: |
|
resp = self.llm.chat.completions.create( |
|
model="gpt-4o-mini", |
|
messages=[ |
|
{"role": "system", "content": "You are a careful reasoning assistant."}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
temperature=0.3, |
|
max_tokens=max_tokens, |
|
) |
|
return resp.choices[0].message.content.strip() |
|
|
|
|
|
def _analyze_question(self, state: AgentState) -> AgentState: |
|
prompt = ( |
|
"You will receive a user question. Think step‑by‑step to decide whether external web search is required. " |
|
"Respond ONLY with a valid Python dict literal in the following format and NOTHING else:\n" |
|
"{\n 'needs_search': bool,\n 'search_query': str\n} \n\n" |
|
f"Question: {state['question']}" |
|
) |
|
raw = self._call_llm(prompt) |
|
try: |
|
decision = ast.literal_eval(raw) |
|
state["needs_search"] = bool(decision.get("needs_search", False)) |
|
state["search_query"] = decision.get("search_query", state["question"]) |
|
except Exception: |
|
|
|
state["needs_search"] = True |
|
state["search_query"] = state["question"] |
|
decision = {"parse_error": raw} |
|
state["logs"] = { |
|
"analyze": {"prompt": prompt, "llm_response": raw, "decision": decision} |
|
} |
|
state["current_step"] = "search" if state["needs_search"] else "answer" |
|
state["history"].append({"step": "analyze", "output": decision}) |
|
return state |
|
|
|
def _perform_search(self, state: AgentState) -> AgentState: |
|
results = simple_search(state["search_query"], max_results=5) |
|
print("\nSearch Results:") |
|
for i, s in enumerate(results, 1): |
|
print(f"[{i}] {s[:120]}…") |
|
state["history"].append({"step": "search", "results": results}) |
|
state["logs"]["search"] = {"query": state["search_query"], "results": results} |
|
state["needs_search"] = not results |
|
state["current_step"] = "recheck" |
|
return state |
|
|
|
def _re_evaluate(self, state: AgentState) -> AgentState: |
|
"""If search returned nothing, reformulate a shorter query.""" |
|
if state["needs_search"]: |
|
state["search_query"] = tighten(state["question"]) |
|
state["current_step"] = "search" |
|
else: |
|
state["current_step"] = "answer" |
|
return state |
|
|
|
def _extract_boxed_answer(self, text: str) -> str: |
|
"""Extract answer from boxed format or return original text if no box found.""" |
|
|
|
box_match = re.search(r'\[box\](.*?)\[/box\]', text, re.DOTALL) |
|
if box_match: |
|
return box_match.group(1).strip() |
|
return text.strip() |
|
|
|
def _generate_answer(self, state: AgentState) -> AgentState: |
|
history_text = "\n".join(str(item) for item in state["history"]) |
|
prompt = ( |
|
f"Answer the user question as directly as possible. If sources were retrieved, incorporate them.\n" |
|
f"Question: {state['question']}\n\nContext:\n{history_text}\n\n" |
|
"Give ONLY the final answer without extra formatting or explanation.\n" |
|
"Put your answer in a box using [box] and [/box] tags.\n" |
|
"If you cannot find a definitive answer, say 'I cannot find a definitive answer to this question.'" |
|
) |
|
answer = self._call_llm(prompt, max_tokens=150) |
|
state["final_answer"] = self._extract_boxed_answer(answer) |
|
state["history"].append({"step": "answer", "output": answer}) |
|
state["logs"]["final_answer"] = {"prompt": prompt, "response": answer} |
|
state["current_step"] = "done" |
|
return state |
|
|
|
|
|
def _build_workflow(self) -> Graph: |
|
sg = StateGraph(state_schema=AgentState) |
|
sg.add_node("analyze", self._analyze_question) |
|
sg.add_node("search", self._perform_search) |
|
sg.add_node("recheck", self._re_evaluate) |
|
sg.add_node("answer", self._generate_answer) |
|
|
|
|
|
sg.add_edge("analyze", "search") |
|
sg.add_edge("analyze", "answer") |
|
sg.add_edge("search", "recheck") |
|
|
|
def router(state: AgentState): |
|
return state["current_step"] |
|
|
|
sg.add_conditional_edges("analyze", router, {"search": "search", "answer": "answer"}) |
|
sg.add_conditional_edges("recheck", router, {"search": "search", "answer": "answer"}) |
|
sg.set_entry_point("analyze") |
|
sg.set_finish_point("answer") |
|
return sg.compile() |
|
|
|
|
|
def __call__(self, question: str, task_id: str = "unknown") -> str: |
|
state: AgentState = { |
|
"question": question, |
|
"current_step": "analyze", |
|
"final_answer": "", |
|
"history": [], |
|
"needs_search": False, |
|
"search_query": "", |
|
"task_id": task_id, |
|
"logs": {}, |
|
} |
|
final_state = self.workflow.invoke(state) |
|
return final_state["final_answer"] |
|
|
|
|
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
print("Space ID: ", space_id) |
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
print("Initializing agent...") |
|
agent = BasicAgent() |
|
print("Agent initialized successfully.") |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(f"Agent code location: {agent_code}") |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent workflow on {len(questions_data)} questions...") |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
try: |
|
print(f"\nProcessing question {task_id}: {question_text[:50]}...") |
|
|
|
|
|
state: AgentState = { |
|
"question": question_text, |
|
"current_step": "analyze", |
|
"final_answer": "", |
|
"history": [], |
|
"needs_search": False, |
|
"search_query": "", |
|
"task_id": task_id, |
|
"logs": {}, |
|
} |
|
|
|
|
|
final_state = agent.workflow.invoke(state) |
|
answer = final_state["final_answer"] |
|
|
|
|
|
logs_text = json.dumps(final_state["logs"], indent=2) |
|
|
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": answer, |
|
"Processing Logs": logs_text |
|
}) |
|
|
|
print(f"Completed question {task_id}") |
|
|
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"ERROR: {e}", |
|
"Processing Logs": f"Error occurred: {str(e)}" |
|
}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame( |
|
label="Questions and Agent Answers", |
|
wrap=True, |
|
column_widths=["10%", "30%", "30%", "30%"] |
|
) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|