File size: 24,917 Bytes
10e9b7d
 
eccf8e4
29140cf
323f26e
fc6f881
 
323f26e
ee90aca
b9ed6f9
9029749
fc6f881
622f2bb
3b2a7e8
cc1c674
 
 
 
4e8e7db
 
 
 
 
 
844e3aa
cc1c674
 
 
 
 
 
 
 
 
 
 
fc6f881
ee90aca
 
 
7eca316
 
 
 
f7505a2
7eca316
fc6f881
 
 
9029749
fc6f881
 
9029749
fc6f881
 
 
 
2200521
 
 
 
 
 
 
 
 
 
fc6f881
cc1c674
fc6f881
a82796c
49d3a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8a2b0
4e8e7db
fa8a2b0
4e8e7db
cc1c674
49d3a15
fa8a2b0
4e8e7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8a2b0
 
4e8e7db
 
fa8a2b0
 
 
ebec9e2
ee90aca
844e3aa
ee90aca
cc1c674
ee90aca
 
844e3aa
ee90aca
 
 
 
4e8e7db
 
 
 
844e3aa
4e8e7db
 
 
 
ee90aca
 
 
 
 
 
 
 
 
 
 
fc6f881
 
 
935cde9
defd4dc
18db580
 
 
 
 
 
fc6f881
 
 
 
1c5f119
31243f4
ee90aca
 
 
 
 
34292b8
fc6f881
34292b8
ee90aca
fc6f881
 
 
e073c39
 
7eca316
e073c39
 
 
98a9782
 
e073c39
 
 
 
 
 
 
98a9782
ee90aca
98a9782
 
 
ee90aca
98a9782
 
 
 
 
 
ee90aca
98a9782
 
a1148b5
ee90aca
 
 
 
18db580
a1148b5
 
4906fcc
18db580
 
a1148b5
18db580
a1148b5
 
 
 
 
2757b9c
f18f370
18db580
 
 
 
4906fcc
18db580
 
4906fcc
18db580
f18f370
 
 
2757b9c
8fbacb7
 
 
f18f370
8fbacb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18f370
 
8fbacb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a076682
 
 
 
 
 
 
 
 
 
 
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
8fbacb7
a076682
 
 
 
 
 
 
 
 
 
 
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
8fbacb7
a076682
 
 
 
 
 
 
 
 
 
 
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
 
8fbacb7
4906fcc
18db580
8fbacb7
108e6be
8fbacb7
a076682
 
 
 
 
 
 
 
 
 
 
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
8fbacb7
a076682
2757b9c
1805291
f7505a2
1805291
cc1c674
1805291
 
ee90aca
1805291
b692f0c
f717af9
98a9782
2757b9c
8fbacb7
4906fcc
18db580
8fbacb7
b692f0c
 
8fbacb7
4906fcc
18db580
8fbacb7
a076682
fc6f881
a076682
fc6f881
a076682
 
 
 
 
 
 
 
 
 
 
 
18db580
a076682
 
 
8fbacb7
 
 
 
 
a076682
 
 
4906fcc
a076682
18db580
a076682
fc6f881
 
 
 
 
4021bf3
3e0fef2
31243f4
 
 
 
7d65c66
fc6f881
7e21665
7e4a06b
3e0fef2
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
8e909cc
 
 
3e0fef2
31243f4
fc6f881
9af06bd
fc6f881
31243f4
3c4371f
31243f4
3e0fef2
f7505a2
31243f4
f7505a2
8e909cc
f7505a2
 
 
 
 
 
 
 
 
e80aab9
f7505a2
7d65c66
 
3e0fef2
31243f4
 
4e8e7db
9af06bd
31243f4
3e0fef2
31243f4
4e8e7db
a1148b5
7ea58f4
2c6be25
793736b
afe6455
793736b
a1148b5
9af06bd
 
 
 
 
 
 
 
 
 
a1148b5
9af06bd
a1148b5
 
 
cc0b0be
9af06bd
 
 
 
3e0fef2
f7505a2
 
a1148b5
f7505a2
3e0fef2
 
9af06bd
09721c1
3e0fef2
 
9af06bd
 
31243f4
f7505a2
3e0fef2
 
4e8e7db
09721c1
3e0fef2
31243f4
 
9af06bd
 
31243f4
f7505a2
9af06bd
3e0fef2
 
f7505a2
3e0fef2
 
e80aab9
 
9af06bd
 
 
8e909cc
e80aab9
 
9af06bd
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
9af06bd
f7505a2
7d65c66
9af06bd
 
 
e80aab9
793736b
 
 
 
 
 
 
 
 
 
 
e80aab9
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
cc0b0be
 
 
 
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
fc6f881
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
fc6f881
7d65c66
 
 
 
 
 
3c4371f
 
31243f4
fc6f881
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated, Optional
from langgraph.graph import Graph, StateGraph, END
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
import cv2
import numpy as np
from io import BytesIO
import tempfile
import subprocess
import sys
import textwrap

# -------------------------
# Environment & constants
# -------------------------

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")

# Initialize HF client
client = InferenceClient(token=HF_TOKEN)

# Create a single Session for all requests
SESSION = requests.Session()

# -------------------------
# Constants
# -------------------------

# Remove SYSTEM constant as we're using JSON contract

# -------------------------
# Utility helpers
# -------------------------

def override(_, new):
    return new

def merge_dicts(old: Dict, new: Dict) -> Dict:
    """Merge two dictionaries, with *new* values taking precedence."""
    return {**old, **new}

def tighten(q: str) -> str:
    """
    Strip long GAIA questions down to quoted phrases and capitalised words.
    Falls back to the original text if we strip too much.
    """
    quoted = re.findall(r'"([^"]+)"', q)
    caps   = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
    short  = " ".join(quoted + caps)
    return short or q

# -------------------------
# Multimodal helpers
# -------------------------

def retry_hf_inference(func):
    """Decorator to retry HF Inference API calls with backoff."""
    def wrapper(*args, **kwargs):
        max_retries = 2
        base_delay = 7
        
        for attempt in range(max_retries + 1):
            try:
                return func(*args, **kwargs)
            except Exception as e:
                if attempt == max_retries:
                    raise
                delay = base_delay * (attempt + 1)
                print(f"HF API error: {str(e)}. Retrying in {delay}s...")
                time.sleep(delay)
    return wrapper

@retry_hf_inference
def image_qa_bytes(data: bytes, prompt: str) -> str:
    """Query LLaVA for image-based QA using bytes."""
    headers = {"Content-Type": "application/octet-stream"}
    return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers)

@retry_hf_inference
def video_label_bytes(data: bytes) -> str:
    """Get video classification using VideoMAE-Base from bytes."""
    # Process video to get first 8 seconds, 16 frames
    
    # Read video from bytes
    video_bytes = BytesIO(data)
    cap = cv2.VideoCapture()
    cap.open(video_bytes)
    
    # Get video properties
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Calculate frames to extract (16 frames over 8 seconds)
    target_frames = 16
    target_duration = 8  # seconds
    frame_interval = max(1, int(frame_count / (fps * target_duration)))
    
    frames = []
    frame_idx = 0
    
    while len(frames) < target_frames and frame_idx < frame_count:
        ret, frame = cap.read()
        if not ret:
            break
            
        if frame_idx % frame_interval == 0:
            # Resize frame to match VideoMAE's expected input
            frame = cv2.resize(frame, (224, 224))
            frames.append(frame)
            
        frame_idx += 1
    
    cap.release()
    
    # If we don't have enough frames, duplicate the last frame
    while len(frames) < target_frames:
        frames.append(frames[-1])
    
    # Stack frames and convert to bytes
    video_array = np.stack(frames)
    _, buffer = cv2.imencode('.mp4', video_array)
    processed_bytes = buffer.tobytes()
    
    # Send to VideoMAE
    headers = {"Content-Type": "application/octet-stream"}
    preds = client.post(
        "MCG-NJU/videomae-base-finetuned-ucf101", 
        data=processed_bytes,
        headers=headers
    )
    return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]

def sheet_answer_bytes(data: bytes) -> str:
    """Process spreadsheet data from bytes and return numeric answer."""
    try:
        df = pd.read_excel(io.BytesIO(data))
    except ValueError:
        df = pd.read_csv(io.BytesIO(data))
    
    if {"Category", "Sales"}.issubset(df.columns):
        total = df[df["Category"] == "Food"]["Sales"].sum()
        return f"{total:.2f}"
    return "sheet_answer_placeholder"

def run_python(code: str) -> str:
    """Quick & dirty evaluator for Python code."""
    with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f:
        f.write(textwrap.dedent(code))
        f.flush()
        out = subprocess.check_output([sys.executable, f.name], timeout=10)
    return out.decode().strip()

def discover_attachment(task_id: str, api_url: str) -> Optional[str]:
    """Probe if a task has an attachment, return URL if it exists."""
    probe = f"{api_url}/files/{task_id}"
    try:
        r = SESSION.get(probe, stream=True, timeout=10, allow_redirects=True)
        if 200 <= r.status_code < 400:
            return probe
    except requests.RequestException:
        pass
    return None

# -------------------------
# State definition
# -------------------------

class AgentState(TypedDict):
    question: str            # Input question
    answer: str             # Output answer (required by Gradio)
    current_step: str       # Current processing step
    next_step: str         # Next step in workflow
    file_url: str          # URL of attached file if any
    history: List[Dict[str, str]]  # Conversation history

# -------------------------
# BasicAgent implementation
# -------------------------

class BasicAgent:
    """A very small agent that can handle text questions and a few file types."""

    JSON_INSTRUCTION = "Return ONLY this exact JSON object: {\"ANSWER\": \"<answer text>\"}"

    def __init__(self, api_url: str = DEFAULT_API_URL):
        if not OPENAI_API_KEY:
            raise EnvironmentError("OPENAI_API_KEY not set")
        self.llm = OpenAI(api_key=OPENAI_API_KEY)
        self.api_url = api_url
        self.workflow = self._build_workflow()

    def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
        try:
            resp = self.llm.chat.completions.create(
                model="gpt-4.1",
                messages=[
                    {"role": "user", "content": prompt},
                ],
                temperature=0,
                top_p=0.1,
                max_tokens=max_tokens,
            )
            return resp.choices[0].message.content.strip()
        except Exception as e:
            print(f"\nLLM Error: {str(e)}")
            raise

    def _safe_parse(self, raw: str) -> str:
        """Pull ANSWER from the JSON string, tolerant to model chatter."""
        try:
            return json.loads(raw)["ANSWER"]
        except Exception:
            # Try to find any JSON object in the text
            match = re.search(r'\{.*?\}', raw, re.S)
            if match:
                try:
                    return json.loads(match.group())["ANSWER"]
                except Exception:
                    pass
            # As a last resort, take everything after the first colon
            return raw.split(':', 1)[-1].strip()

    def __call__(self, question: str, task_id: str = "unknown", file_url: str = "") -> str:
        # 1) if file_url blank, attempt discovery once
        if not file_url:
            file_url = discover_attachment(task_id, self.api_url) or ""

        # Initialize state with just the question
        state: AgentState = {
            "question": question,
            "answer": "",
            "current_step": "route",
            "next_step": "",
            "file_url": file_url,
            "history": []
        }
        
        print(f"\nProcessing task {task_id}")
        print(f"Question: {state['question']}")
        print(f"File URL: {state['file_url']}")
        
        try:
            # Invoke the workflow with just the question
            final_state = self.workflow.invoke({"question": question})
            
            # Debug guard to check for answer key
            if "answer" not in final_state:
                raise ValueError(f"☠   No 'answer' key in state; keys = {list(final_state.keys())}")
                
            return final_state["answer"]
            
        except Exception as e:
            print(f"Error in workflow execution: {str(e)}")
            return f"Error processing question: {str(e)}"

    def _route_to_tool(self, state: AgentState) -> Dict[str, Any]:
        """Route the state to the appropriate tool based on file type."""
        if not state["file_url"]:
            print("No file URL, routing to text processing")
            return {"next_step": "process_text"}
            
        try:
            response = SESSION.get(state["file_url"], timeout=30)
            response.raise_for_status()
            data = response.content
            
            # Get content type from response headers first, fallback to URL-based detection
            kind = response.headers.get("Content-Type", "")
            if kind in ("application/octet-stream", ""):
                # rough sniff: look at the first few bytes
                sig = data[:4]
                if sig.startswith(b"\x89PNG"):
                    kind = "image/png"
                elif sig.startswith(b"\xFF\xD8"):
                    kind = "image/jpeg"
                elif sig[:2] == b"PK":  # XLSX = ZIP
                    kind = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
            elif not kind:  # fallback if header missing
                kind = mimetypes.guess_type(state["file_url"])[0] or ""
            
            print(f"Detected file type: {kind}")
            
            if "image" in kind:
                return {"next_step": "process_image"}
            elif "video" in kind:
                return {"next_step": "process_video"}
            elif "spreadsheet" in kind or "excel" in kind:
                return {"next_step": "process_spreadsheet"}
            elif state["file_url"].endswith(".py"):
                return {"next_step": "process_python"}
            else:
                print(f"Unsupported file type: {kind}")
                return {"next_step": "process_text"}
                
        except Exception as e:
            print(f"Error determining file type: {str(e)}")
            return {"next_step": "process_text"}

    def _process_image(self, state: AgentState) -> Dict[str, Any]:
        """Process image files using LLaVA."""
        try:
            print(f"Downloading {state['file_url']} …")
            response = SESSION.get(state["file_url"], timeout=30)
            response.raise_for_status()
            data = response.content
            print(f"Successfully downloaded file, size: {len(data)} bytes")
            
            print("Processing as image...")
            answer = image_qa_bytes(data, state["question"])
            
            print(f"Generated answer: {answer}")
            return {
                "answer": answer,
                "next_step": END
            }
        except Exception as e:
            print(f"\nError processing image {state['file_url']}: {str(e)}")
            return {
                "answer": f"Error processing image: {str(e)}",
                "next_step": END
            }

    def _process_video(self, state: AgentState) -> Dict[str, Any]:
        """Process video files using VideoMAE."""
        try:
            print(f"Downloading {state['file_url']} …")
            response = SESSION.get(state["file_url"], timeout=30)
            response.raise_for_status()
            data = response.content
            print(f"Successfully downloaded file, size: {len(data)} bytes")
            
            print("Processing as video...")
            answer = video_label_bytes(data)
            
            print(f"Generated answer: {answer}")
            return {
                "answer": answer,
                "next_step": END
            }
        except Exception as e:
            print(f"\nError processing video {state['file_url']}: {str(e)}")
            return {
                "answer": f"Error processing video: {str(e)}",
                "next_step": END
            }

    def _process_spreadsheet(self, state: AgentState) -> Dict[str, Any]:
        """Process spreadsheet files."""
        try:
            print(f"Downloading {state['file_url']} …")
            response = SESSION.get(state["file_url"], timeout=30)
            response.raise_for_status()
            data = response.content
            print(f"Successfully downloaded file, size: {len(data)} bytes")
            
            print("Processing as spreadsheet...")
            answer = sheet_answer_bytes(data)
            
            print(f"Generated answer: {answer}")
            return {
                "answer": answer,
                "next_step": END
            }
        except Exception as e:
            print(f"\nError processing spreadsheet {state['file_url']}: {str(e)}")
            return {
                "answer": f"Error processing spreadsheet: {str(e)}",
                "next_step": END
            }

    def _process_python(self, state: AgentState) -> Dict[str, Any]:
        """Process Python files."""
        try:
            print(f"Downloading {state['file_url']} …")
            response = SESSION.get(state["file_url"], timeout=30)
            response.raise_for_status()
            data = response.content
            print(f"Successfully downloaded file, size: {len(data)} bytes")
            
            print("Processing as Python file...")
            answer = run_python(data.decode())
            
            print(f"Generated answer: {answer}")
            return {
                "answer": answer,
                "next_step": END
            }
        except Exception as e:
            print(f"\nError processing Python file {state['file_url']}: {str(e)}")
            return {
                "answer": f"Error processing Python file: {str(e)}",
                "next_step": END
            }

    def _process_text(self, state: AgentState) -> Dict[str, Any]:
        """Process text-only questions using LLM."""
        print("\nProcessing as text-only question...")
        prompt = f"""
Answer this question using the materials provided.

QUESTION:
{state['question']}

{self.JSON_INSTRUCTION}
"""
        try:
            raw = self._call_llm(prompt, 300)
            answer = self._safe_parse(raw)
            print(f"Generated answer: {answer}")
            return {
                "answer": answer,
                "next_step": END
            }
        except Exception as e:
            print(f"\nLLM Error in answer generation: {str(e)}")
            return {
                "answer": "I encountered an error while generating the answer.",
                "next_step": END
            }

    def _build_workflow(self) -> Graph:
        """Build the workflow graph with conditional edges."""
        sg = StateGraph(state_schema=AgentState)
        
        # Add nodes for each tool
        sg.add_node("route", self._route_to_tool)
        sg.add_node("process_image", self._process_image)
        sg.add_node("process_video", self._process_video)
        sg.add_node("process_spreadsheet", self._process_spreadsheet)
        sg.add_node("process_python", self._process_python)
        sg.add_node("process_text", self._process_text)
        
        # Set entry point
        sg.set_entry_point("route")
        
        # Add conditional edges from route to processing nodes
        sg.add_conditional_edges(
            "route",
            {
                "process_image": lambda x: x["next_step"] == "process_image",
                "process_video": lambda x: x["next_step"] == "process_video",
                "process_spreadsheet": lambda x: x["next_step"] == "process_spreadsheet",
                "process_python": lambda x: x["next_step"] == "process_python",
                "process_text": lambda x: x["next_step"] == "process_text"
            }
        )
        
        # Add edges from each processing node to END
        for node in ["process_image", "process_video", "process_spreadsheet", "process_python", "process_text"]:
            sg.add_edge(node, END)  # Critical: ensure each processing node terminates at END
            
        return sg.compile()

# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")
    print("Space ID: ", space_id)
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Create a persistent session for all requests
    sess = requests.Session()

    # 1. Instantiate Agent
    try:
        print("Initializing agent...")
        agent = BasicAgent(api_url=api_url)
        print("Agent initialized successfully.")
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = sess.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # 3. Run Agent and Collect Answers
    results_log = []
    answers_payload = []
    
    for item in questions_data:
        task_id = item.get("task_id")
        if not task_id:
            print("Skipping item without task_id")
            continue

        try:
            print(f"\nProcessing question {task_id}...")
            
            # Handle file URL with conditional fallback to generic attachment endpoint
            raw_url = item.get("file_url") or ""
            if not raw_url:  # field missing
                raw_url = discover_attachment(task_id, api_url) or ""
            file_url = raw_url  # already absolute
            
            # Get the question text
            question = item.get("question", "")
            if not question:
                print(f"Skipping task {task_id} - no question text")
                continue
                
            print(f"Question: {question}")
            print(f"File URL: {file_url}")
            
            # Get answer from agent
            answer = agent(
                question=question,
                task_id=task_id,
                file_url=file_url
            )
            
            if not answer:
                print(f"Warning: Empty answer for task {task_id}")
                answer = "No answer generated"
            
            # Add to results
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": answer
            })
            results_log.append({
                "Task ID": task_id,
                "Question": question,
                "Submitted Answer": answer
            })
            
            print(f"Successfully processed task {task_id}")
            
        except Exception as e:
            print(f"Error processing task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": f"ERROR: {e}"
            })

    if not answers_payload:
        print("No answers were generated.")
        return "No answers were generated. Please check the logs for details.", pd.DataFrame(results_log)

    # 4. Submit Answers
    print(f"\nSubmitting {len(answers_payload)} answers...")
    submission_data = {
        "username": username.strip(),
        "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
        "answers": answers_payload
    }

    try:
        print(f"Submitting to: {submit_url}")
        print(f"Submission data: {json.dumps(submission_data, indent=2)}")
        
        response = sess.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print(final_status)
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        error_msg = f"Submission Failed: {str(e)}"
        print(error_msg)
        return error_msg, pd.DataFrame(results_log)

def attachment_url(task_id: str, api_url: str, sess: requests.Session) -> str | None:
    """Probe if a task has an attachment, return URL if it exists."""
    probe = f"{api_url}/files/{task_id}"
    try:
        r = sess.head(probe, timeout=10)
        if r.status_code == 200:
            return probe  # attachment exists
    except requests.RequestException:
        pass
    return None  # no file

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(
        label="Questions and Agent Answers", 
        wrap=True,
        column_widths=["10%", "30%", "30%", "30%"]  # Adjust column widths for better display
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)