File size: 24,917 Bytes
10e9b7d eccf8e4 29140cf 323f26e fc6f881 323f26e ee90aca b9ed6f9 9029749 fc6f881 622f2bb 3b2a7e8 cc1c674 4e8e7db 844e3aa cc1c674 fc6f881 ee90aca 7eca316 f7505a2 7eca316 fc6f881 9029749 fc6f881 9029749 fc6f881 2200521 fc6f881 cc1c674 fc6f881 a82796c 49d3a15 fa8a2b0 4e8e7db fa8a2b0 4e8e7db cc1c674 49d3a15 fa8a2b0 4e8e7db fa8a2b0 4e8e7db fa8a2b0 ebec9e2 ee90aca 844e3aa ee90aca cc1c674 ee90aca 844e3aa ee90aca 4e8e7db 844e3aa 4e8e7db ee90aca fc6f881 935cde9 defd4dc 18db580 fc6f881 1c5f119 31243f4 ee90aca 34292b8 fc6f881 34292b8 ee90aca fc6f881 e073c39 7eca316 e073c39 98a9782 e073c39 98a9782 ee90aca 98a9782 ee90aca 98a9782 ee90aca 98a9782 a1148b5 ee90aca 18db580 a1148b5 4906fcc 18db580 a1148b5 18db580 a1148b5 2757b9c f18f370 18db580 4906fcc 18db580 4906fcc 18db580 f18f370 2757b9c 8fbacb7 f18f370 8fbacb7 f18f370 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 a076682 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 a076682 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 108e6be 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 a076682 8fbacb7 4906fcc 18db580 8fbacb7 a076682 8fbacb7 a076682 2757b9c 1805291 f7505a2 1805291 cc1c674 1805291 ee90aca 1805291 b692f0c f717af9 98a9782 2757b9c 8fbacb7 4906fcc 18db580 8fbacb7 b692f0c 8fbacb7 4906fcc 18db580 8fbacb7 a076682 fc6f881 a076682 fc6f881 a076682 18db580 a076682 8fbacb7 a076682 4906fcc a076682 18db580 a076682 fc6f881 4021bf3 3e0fef2 31243f4 7d65c66 fc6f881 7e21665 7e4a06b 3e0fef2 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 8e909cc 3e0fef2 31243f4 fc6f881 9af06bd fc6f881 31243f4 3c4371f 31243f4 3e0fef2 f7505a2 31243f4 f7505a2 8e909cc f7505a2 e80aab9 f7505a2 7d65c66 3e0fef2 31243f4 4e8e7db 9af06bd 31243f4 3e0fef2 31243f4 4e8e7db a1148b5 7ea58f4 2c6be25 793736b afe6455 793736b a1148b5 9af06bd a1148b5 9af06bd a1148b5 cc0b0be 9af06bd 3e0fef2 f7505a2 a1148b5 f7505a2 3e0fef2 9af06bd 09721c1 3e0fef2 9af06bd 31243f4 f7505a2 3e0fef2 4e8e7db 09721c1 3e0fef2 31243f4 9af06bd 31243f4 f7505a2 9af06bd 3e0fef2 f7505a2 3e0fef2 e80aab9 9af06bd 8e909cc e80aab9 9af06bd 31243f4 e80aab9 3c4371f e80aab9 9af06bd f7505a2 7d65c66 9af06bd e80aab9 793736b e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 cc0b0be e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f fc6f881 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 fc6f881 7d65c66 3c4371f 31243f4 fc6f881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated, Optional
from langgraph.graph import Graph, StateGraph, END
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
import cv2
import numpy as np
from io import BytesIO
import tempfile
import subprocess
import sys
import textwrap
# -------------------------
# Environment & constants
# -------------------------
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize HF client
client = InferenceClient(token=HF_TOKEN)
# Create a single Session for all requests
SESSION = requests.Session()
# -------------------------
# Constants
# -------------------------
# Remove SYSTEM constant as we're using JSON contract
# -------------------------
# Utility helpers
# -------------------------
def override(_, new):
return new
def merge_dicts(old: Dict, new: Dict) -> Dict:
"""Merge two dictionaries, with *new* values taking precedence."""
return {**old, **new}
def tighten(q: str) -> str:
"""
Strip long GAIA questions down to quoted phrases and capitalised words.
Falls back to the original text if we strip too much.
"""
quoted = re.findall(r'"([^"]+)"', q)
caps = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
short = " ".join(quoted + caps)
return short or q
# -------------------------
# Multimodal helpers
# -------------------------
def retry_hf_inference(func):
"""Decorator to retry HF Inference API calls with backoff."""
def wrapper(*args, **kwargs):
max_retries = 2
base_delay = 7
for attempt in range(max_retries + 1):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt == max_retries:
raise
delay = base_delay * (attempt + 1)
print(f"HF API error: {str(e)}. Retrying in {delay}s...")
time.sleep(delay)
return wrapper
@retry_hf_inference
def image_qa_bytes(data: bytes, prompt: str) -> str:
"""Query LLaVA for image-based QA using bytes."""
headers = {"Content-Type": "application/octet-stream"}
return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers)
@retry_hf_inference
def video_label_bytes(data: bytes) -> str:
"""Get video classification using VideoMAE-Base from bytes."""
# Process video to get first 8 seconds, 16 frames
# Read video from bytes
video_bytes = BytesIO(data)
cap = cv2.VideoCapture()
cap.open(video_bytes)
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate frames to extract (16 frames over 8 seconds)
target_frames = 16
target_duration = 8 # seconds
frame_interval = max(1, int(frame_count / (fps * target_duration)))
frames = []
frame_idx = 0
while len(frames) < target_frames and frame_idx < frame_count:
ret, frame = cap.read()
if not ret:
break
if frame_idx % frame_interval == 0:
# Resize frame to match VideoMAE's expected input
frame = cv2.resize(frame, (224, 224))
frames.append(frame)
frame_idx += 1
cap.release()
# If we don't have enough frames, duplicate the last frame
while len(frames) < target_frames:
frames.append(frames[-1])
# Stack frames and convert to bytes
video_array = np.stack(frames)
_, buffer = cv2.imencode('.mp4', video_array)
processed_bytes = buffer.tobytes()
# Send to VideoMAE
headers = {"Content-Type": "application/octet-stream"}
preds = client.post(
"MCG-NJU/videomae-base-finetuned-ucf101",
data=processed_bytes,
headers=headers
)
return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]
def sheet_answer_bytes(data: bytes) -> str:
"""Process spreadsheet data from bytes and return numeric answer."""
try:
df = pd.read_excel(io.BytesIO(data))
except ValueError:
df = pd.read_csv(io.BytesIO(data))
if {"Category", "Sales"}.issubset(df.columns):
total = df[df["Category"] == "Food"]["Sales"].sum()
return f"{total:.2f}"
return "sheet_answer_placeholder"
def run_python(code: str) -> str:
"""Quick & dirty evaluator for Python code."""
with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f:
f.write(textwrap.dedent(code))
f.flush()
out = subprocess.check_output([sys.executable, f.name], timeout=10)
return out.decode().strip()
def discover_attachment(task_id: str, api_url: str) -> Optional[str]:
"""Probe if a task has an attachment, return URL if it exists."""
probe = f"{api_url}/files/{task_id}"
try:
r = SESSION.get(probe, stream=True, timeout=10, allow_redirects=True)
if 200 <= r.status_code < 400:
return probe
except requests.RequestException:
pass
return None
# -------------------------
# State definition
# -------------------------
class AgentState(TypedDict):
question: str # Input question
answer: str # Output answer (required by Gradio)
current_step: str # Current processing step
next_step: str # Next step in workflow
file_url: str # URL of attached file if any
history: List[Dict[str, str]] # Conversation history
# -------------------------
# BasicAgent implementation
# -------------------------
class BasicAgent:
"""A very small agent that can handle text questions and a few file types."""
JSON_INSTRUCTION = "Return ONLY this exact JSON object: {\"ANSWER\": \"<answer text>\"}"
def __init__(self, api_url: str = DEFAULT_API_URL):
if not OPENAI_API_KEY:
raise EnvironmentError("OPENAI_API_KEY not set")
self.llm = OpenAI(api_key=OPENAI_API_KEY)
self.api_url = api_url
self.workflow = self._build_workflow()
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
try:
resp = self.llm.chat.completions.create(
model="gpt-4.1",
messages=[
{"role": "user", "content": prompt},
],
temperature=0,
top_p=0.1,
max_tokens=max_tokens,
)
return resp.choices[0].message.content.strip()
except Exception as e:
print(f"\nLLM Error: {str(e)}")
raise
def _safe_parse(self, raw: str) -> str:
"""Pull ANSWER from the JSON string, tolerant to model chatter."""
try:
return json.loads(raw)["ANSWER"]
except Exception:
# Try to find any JSON object in the text
match = re.search(r'\{.*?\}', raw, re.S)
if match:
try:
return json.loads(match.group())["ANSWER"]
except Exception:
pass
# As a last resort, take everything after the first colon
return raw.split(':', 1)[-1].strip()
def __call__(self, question: str, task_id: str = "unknown", file_url: str = "") -> str:
# 1) if file_url blank, attempt discovery once
if not file_url:
file_url = discover_attachment(task_id, self.api_url) or ""
# Initialize state with just the question
state: AgentState = {
"question": question,
"answer": "",
"current_step": "route",
"next_step": "",
"file_url": file_url,
"history": []
}
print(f"\nProcessing task {task_id}")
print(f"Question: {state['question']}")
print(f"File URL: {state['file_url']}")
try:
# Invoke the workflow with just the question
final_state = self.workflow.invoke({"question": question})
# Debug guard to check for answer key
if "answer" not in final_state:
raise ValueError(f"☠ No 'answer' key in state; keys = {list(final_state.keys())}")
return final_state["answer"]
except Exception as e:
print(f"Error in workflow execution: {str(e)}")
return f"Error processing question: {str(e)}"
def _route_to_tool(self, state: AgentState) -> Dict[str, Any]:
"""Route the state to the appropriate tool based on file type."""
if not state["file_url"]:
print("No file URL, routing to text processing")
return {"next_step": "process_text"}
try:
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
# Get content type from response headers first, fallback to URL-based detection
kind = response.headers.get("Content-Type", "")
if kind in ("application/octet-stream", ""):
# rough sniff: look at the first few bytes
sig = data[:4]
if sig.startswith(b"\x89PNG"):
kind = "image/png"
elif sig.startswith(b"\xFF\xD8"):
kind = "image/jpeg"
elif sig[:2] == b"PK": # XLSX = ZIP
kind = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
elif not kind: # fallback if header missing
kind = mimetypes.guess_type(state["file_url"])[0] or ""
print(f"Detected file type: {kind}")
if "image" in kind:
return {"next_step": "process_image"}
elif "video" in kind:
return {"next_step": "process_video"}
elif "spreadsheet" in kind or "excel" in kind:
return {"next_step": "process_spreadsheet"}
elif state["file_url"].endswith(".py"):
return {"next_step": "process_python"}
else:
print(f"Unsupported file type: {kind}")
return {"next_step": "process_text"}
except Exception as e:
print(f"Error determining file type: {str(e)}")
return {"next_step": "process_text"}
def _process_image(self, state: AgentState) -> Dict[str, Any]:
"""Process image files using LLaVA."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as image...")
answer = image_qa_bytes(data, state["question"])
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing image {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing image: {str(e)}",
"next_step": END
}
def _process_video(self, state: AgentState) -> Dict[str, Any]:
"""Process video files using VideoMAE."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as video...")
answer = video_label_bytes(data)
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing video {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing video: {str(e)}",
"next_step": END
}
def _process_spreadsheet(self, state: AgentState) -> Dict[str, Any]:
"""Process spreadsheet files."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as spreadsheet...")
answer = sheet_answer_bytes(data)
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing spreadsheet {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing spreadsheet: {str(e)}",
"next_step": END
}
def _process_python(self, state: AgentState) -> Dict[str, Any]:
"""Process Python files."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as Python file...")
answer = run_python(data.decode())
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing Python file {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing Python file: {str(e)}",
"next_step": END
}
def _process_text(self, state: AgentState) -> Dict[str, Any]:
"""Process text-only questions using LLM."""
print("\nProcessing as text-only question...")
prompt = f"""
Answer this question using the materials provided.
QUESTION:
{state['question']}
{self.JSON_INSTRUCTION}
"""
try:
raw = self._call_llm(prompt, 300)
answer = self._safe_parse(raw)
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nLLM Error in answer generation: {str(e)}")
return {
"answer": "I encountered an error while generating the answer.",
"next_step": END
}
def _build_workflow(self) -> Graph:
"""Build the workflow graph with conditional edges."""
sg = StateGraph(state_schema=AgentState)
# Add nodes for each tool
sg.add_node("route", self._route_to_tool)
sg.add_node("process_image", self._process_image)
sg.add_node("process_video", self._process_video)
sg.add_node("process_spreadsheet", self._process_spreadsheet)
sg.add_node("process_python", self._process_python)
sg.add_node("process_text", self._process_text)
# Set entry point
sg.set_entry_point("route")
# Add conditional edges from route to processing nodes
sg.add_conditional_edges(
"route",
{
"process_image": lambda x: x["next_step"] == "process_image",
"process_video": lambda x: x["next_step"] == "process_video",
"process_spreadsheet": lambda x: x["next_step"] == "process_spreadsheet",
"process_python": lambda x: x["next_step"] == "process_python",
"process_text": lambda x: x["next_step"] == "process_text"
}
)
# Add edges from each processing node to END
for node in ["process_image", "process_video", "process_spreadsheet", "process_python", "process_text"]:
sg.add_edge(node, END) # Critical: ensure each processing node terminates at END
return sg.compile()
# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Create a persistent session for all requests
sess = requests.Session()
# 1. Instantiate Agent
try:
print("Initializing agent...")
agent = BasicAgent(api_url=api_url)
print("Agent initialized successfully.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = sess.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Agent and Collect Answers
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
print("Skipping item without task_id")
continue
try:
print(f"\nProcessing question {task_id}...")
# Handle file URL with conditional fallback to generic attachment endpoint
raw_url = item.get("file_url") or ""
if not raw_url: # field missing
raw_url = discover_attachment(task_id, api_url) or ""
file_url = raw_url # already absolute
# Get the question text
question = item.get("question", "")
if not question:
print(f"Skipping task {task_id} - no question text")
continue
print(f"Question: {question}")
print(f"File URL: {file_url}")
# Get answer from agent
answer = agent(
question=question,
task_id=task_id,
file_url=file_url
)
if not answer:
print(f"Warning: Empty answer for task {task_id}")
answer = "No answer generated"
# Add to results
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": question,
"Submitted Answer": answer
})
print(f"Successfully processed task {task_id}")
except Exception as e:
print(f"Error processing task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
print("No answers were generated.")
return "No answers were generated. Please check the logs for details.", pd.DataFrame(results_log)
# 4. Submit Answers
print(f"\nSubmitting {len(answers_payload)} answers...")
submission_data = {
"username": username.strip(),
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers_payload
}
try:
print(f"Submitting to: {submit_url}")
print(f"Submission data: {json.dumps(submission_data, indent=2)}")
response = sess.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print(final_status)
return final_status, pd.DataFrame(results_log)
except Exception as e:
error_msg = f"Submission Failed: {str(e)}"
print(error_msg)
return error_msg, pd.DataFrame(results_log)
def attachment_url(task_id: str, api_url: str, sess: requests.Session) -> str | None:
"""Probe if a task has an attachment, return URL if it exists."""
probe = f"{api_url}/files/{task_id}"
try:
r = sess.head(probe, timeout=10)
if r.status_code == 200:
return probe # attachment exists
except requests.RequestException:
pass
return None # no file
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
column_widths=["10%", "30%", "30%", "30%"] # Adjust column widths for better display
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|