# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import gzip import json import sys from collections import defaultdict from pathlib import Path import numpy as np import treetable as tt BASELINES = [ 'WaveUNet', 'MMDenseLSTM', 'OpenUnmix', 'IRM2', ] EVALS = Path("evals") LOGS = Path("logs") BASELINE_EVALS = Path("baselines") STD_KEY = "seed" parser = argparse.ArgumentParser("result_table.py") parser.add_argument("-p", "--paper", action="store_true", help="show results from the paper experiment") parser.add_argument("-i", "--individual", action="store_true", help="no aggregation by seed") parser.add_argument("-l", "--latex", action="store_true", help="output easy to copy latex") parser.add_argument("metric", default="SDR", nargs="?") args = parser.parse_args() if args.paper: EVALS = Path("results/evals") LOGS = Path("results/logs") def read_track(metric, results, pool=np.nanmedian): all_metrics = {} for target in results["targets"]: source = target["name"] metrics = [frame["metrics"][metric] for frame in target["frames"]] metrics = pool(metrics) all_metrics[source] = metrics return all_metrics def read(metric, path, pool=np.nanmedian): all_metrics = defaultdict(list) for f in path.iterdir(): if f.name.endswith(".json.gz"): results = json.load(gzip.open(f, "r")) metrics = read_track(metric, results, pool=pool) for source, value in metrics.items(): all_metrics[source].append(value) return {key: np.array(value) for key, value in all_metrics.items()} all_stats = defaultdict(list) for name in BASELINES: all_stats[name] = [read(args.metric, BASELINE_EVALS / name / "test")] for path in EVALS.iterdir(): results = path / "results" / "test" if not results.exists(): continue if not args.paper and not (LOGS / (path.name + ".done")).exists(): continue name = path.name model = "Demucs" if "tasnet" in name: model = "Tasnet" if name == "default": parts = [] else: parts = [p.split("=") for p in name.split(" ") if p != '--tasnet'] if not args.individual: parts = [(k, v) for k, v in parts if k != STD_KEY] name = model + " " + " ".join(f"{k}={v}" for k, v in parts) stats = read(args.metric, results) if (not stats or len(stats["drums"]) != 50): print(f"Missing stats for {results}", file=sys.stderr) else: all_stats[name].append(stats) metrics = [tt.leaf("score", ".2f"), tt.leaf("std", ".2f")] sources = ["drums", "bass", "other", "vocals"] mytable = tt.table([tt.leaf("name"), tt.group("all", metrics + [tt.leaf("count")])] + [tt.group(source, metrics) for idx, source in enumerate(sources)]) lines = [] for name, stats in all_stats.items(): line = {"name": name} if 'accompaniment' in stats: del stats['accompaniment'] alls = [] for source in sources: stat = [np.nanmedian(s[source]) for s in stats] alls.append(stat) line[source] = {"score": np.mean(stat), "std": np.std(stat) / len(stat)**0.5} alls = np.array(alls) line["all"] = { "score": alls.mean(), "std": alls.mean(0).std() / alls.shape[1]**0.5, "count": alls.shape[1] } lines.append(line) def latex_number(m): out = f"{m['score']:.2f}" if m["std"] > 0: std = "{:.2f}".format(m["std"])[1:] out += f" $\\scriptstyle\\pm {std}$" return out lines.sort(key=lambda x: -x["all"]["score"]) if args.latex: for line in lines: cols = [ line['name'], latex_number(line["all"]), latex_number(line["drums"]), latex_number(line["bass"]), latex_number(line["other"]), latex_number(line["vocals"]) ] print(" & ".join(cols) + r" \\") else: print(tt.treetable(lines, mytable, colors=['33', '0']))