Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
-
|
12 |
-
# Load sentiment pipeline
|
13 |
-
sentiment_pipeline = pipeline(
|
14 |
-
"text-classification",
|
15 |
-
model=model,
|
16 |
-
tokenizer=tokenizer
|
17 |
-
)
|
18 |
-
except Exception as e:
|
19 |
-
print(f"Error loading model: {e}")
|
20 |
-
exit(1)
|
21 |
|
22 |
-
# Sentiment analysis function with keyword overrides
|
23 |
def analyze(text):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
# Force "negative" for bearish terms
|
40 |
-
bearish_keywords = ["sec lawsuit", "hack", "fud", "sell-off", "delist"]
|
41 |
-
if any(keyword in text_lower for keyword in bearish_keywords):
|
42 |
-
return {"label": "negative", "score": 0.99}
|
43 |
-
|
44 |
-
# Return original prediction if no keywords matched
|
45 |
-
return {"label": result["label"], "score": result["score"]}
|
46 |
-
|
47 |
-
except Exception as e:
|
48 |
-
return {"error": str(e)}
|
49 |
|
50 |
# Configure Gradio interface for API compatibility
|
51 |
-
gr.Interface(
|
52 |
fn=analyze,
|
53 |
inputs=gr.Textbox(placeholder="Enter crypto news headline..."),
|
54 |
-
outputs=gr.JSON(),
|
55 |
-
title="Crypto Sentiment Analysis",
|
56 |
-
description="Analyzes sentiment of crypto
|
57 |
-
flagging_mode="never"
|
58 |
-
).launch(
|
59 |
-
server_name="0.0.0.0",
|
60 |
-
server_port=7860
|
61 |
)
|
62 |
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# Load a crypto-specific sentiment model (e.g., ElKulako/cryptobert)
|
5 |
+
sentiment_pipeline = pipeline(
|
6 |
+
"text-classification",
|
7 |
+
model="ElKulako/cryptobert", # Pre-trained on crypto data
|
8 |
+
tokenizer="ElKulako/cryptobert"
|
9 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
def analyze(text):
|
12 |
+
# Get the model's initial prediction
|
13 |
+
result = sentiment_pipeline(text)[0]
|
14 |
+
|
15 |
+
# Override logic for crypto-specific keywords (case-insensitive)
|
16 |
+
text_lower = text.lower()
|
17 |
+
|
18 |
+
# Force "positive" for bullish terms
|
19 |
+
bullish_keywords = ["etf approved", "bullish", "halving", "burn", "greenlighted"]
|
20 |
+
if any(keyword in text_lower for keyword in bullish_keywords):
|
21 |
+
return {"label": "positive", "score": 0.99}
|
22 |
|
23 |
+
# Force "negative" for bearish terms
|
24 |
+
bearish_keywords = ["sec lawsuit", "hack", "fud", "sell-off", "delist"]
|
25 |
+
if any(keyword in text_lower for keyword in bearish_keywords):
|
26 |
+
return {"label": "negative", "score": 0.99}
|
27 |
+
|
28 |
+
# Return original prediction if no keywords matched
|
29 |
+
return {"label": result["label"], "score": result["score"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Configure Gradio interface for API compatibility
|
32 |
+
app = gr.Interface(
|
33 |
fn=analyze,
|
34 |
inputs=gr.Textbox(placeholder="Enter crypto news headline..."),
|
35 |
+
outputs=gr.JSON(), # JSON output for n8n integration
|
36 |
+
title="Crypto-Specific Sentiment Analysis",
|
37 |
+
description="Analyzes sentiment of crypto news headlines. Overrides neutral predictions for key terms like 'ETF approved' or 'SEC lawsuit'.",
|
38 |
+
flagging_mode="never"
|
|
|
|
|
|
|
39 |
)
|
40 |
|
41 |
+
# Enable sharing and API
|
42 |
+
app.launch(share=True, api_name="predict")
|
43 |
+
|