flask-backend / app.py
nabeelarain713's picture
Update app.py
721b535 verified
raw
history blame
13 kB
from PIL import Image
import numpy as np
import base64
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
from flask import Flask, request, jsonify
from flask_cors import CORS
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import google.generativeai as genai
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from reportlab.lib.utils import ImageReader
from flask import send_file, jsonify, request
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import A4
from reportlab.lib.units import inch
import io, torch, os
from reportlab.lib import colors
from datetime import datetime
os.environ['GOOGLE_API_KEY'] = "AIzaSyCv2dNQMCD3-9s3E5Th7bDy4ko0dyucRCc"
genai.configure(api_key=os.environ['GOOGLE_API_KEY'])
# Setup
app = Flask(__name__)
CORS(app)
# Initialize device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and processor
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-tiny-ade-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-tiny-ade-semantic")
# model.load_state_dict(torch.load(r"E:\FYP Work\FYP_code\backend\mask2former-ade-(splicing1_2).pth", map_location=device))
model.load_state_dict(torch.load(r"mask2former-ade-(splicing1_2).pth", map_location=device))
model = model.to(device)
model.eval()
# ========== Flask routes ==========
@app.route('/')
def home():
return "Backend is running!"
@app.route('/predict', methods=['POST'])
def predict():
if 'image' not in request.files:
return jsonify({"error": "No image uploaded"}), 400
try:
file = request.files['image']
image = Image.open(io.BytesIO(file.read()))
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Encode original image to base64
original_image_buffer = io.BytesIO()
image.save(original_image_buffer, format="PNG")
original_image_base64 = base64.b64encode(original_image_buffer.getvalue()).decode("utf-8")
# Process image using Mask2Former processor
inputs = processor(images=image, return_tensors="pt").to(device)
# Predict
with torch.no_grad():
outputs = model(**inputs)
# Process outputs
predicted_segmentation = processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]]
)[0]
# Convert to numpy array for visualization
segmentation_mask = predicted_segmentation.cpu().numpy()
# ========== Create visualizations ==========
# Create side-by-side plot
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
axes[0].imshow(image)
axes[0].set_title("Input Image")
axes[1].imshow(segmentation_mask)
axes[1].set_title("Prediction")
for ax in axes:
ax.axis("off")
plt.tight_layout()
# Save visualization to buffer
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight', pad_inches=0)
buf.seek(0)
visualization_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close()
# ========== Encode mask separately ==========
# Normalize mask to 0-255 range
mask_normalized = (segmentation_mask - segmentation_mask.min()) * (255.0 / (segmentation_mask.max() - segmentation_mask.min()))
mask_image = Image.fromarray(mask_normalized.astype(np.uint8))
mask_buffer = io.BytesIO()
mask_image.save(mask_buffer, format="PNG")
mask_base64 = base64.b64encode(mask_buffer.getvalue()).decode("utf-8")
#VLM code
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash")
# Create multimodal message
message = HumanMessage(
content=[
{
"type": "text",
#"text": "Please explain briefly where the manipulation has been occured, don't use mask"
"text": " This is an image and its predicted binary mask showing manipulated regions in white. "
"Please explain briefly in 2-3 lines where the manipulation occurred and what might have been altered."
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{original_image_base64}"
},
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{mask_base64}"
},
},
]
)
# Get response
response = llm.invoke([message])
print(response.content)
return jsonify({
"original_image": original_image_base64,
"mask": mask_base64,
"visualization": visualization_base64,
"message": response.content
})
except Exception as e:
return jsonify({"error": str(e)}), 500
import json
from threading import Lock
counter_file = "counter.json"
counter_lock = Lock()
def get_case_id():
today = datetime.now().strftime('%Y%m%d')
with counter_lock:
if os.path.exists(counter_file):
with open(counter_file, "r") as f:
data = json.load(f)
else:
data = {}
count = data.get(today, 0) + 1
data[today] = count
with open(counter_file, "w") as f:
json.dump(data, f)
return f"DFD-{today}-{count:03d}"
@app.route('/download-report', methods=['POST'])
def download_report():
try:
file = request.files['image']
image = Image.open(io.BytesIO(file.read())).convert("RGB")
# === Process Image ===
inputs = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
predicted_segmentation = processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]]
)[0]
segmentation_mask = predicted_segmentation.cpu().numpy()
# === Create Mask Image ===
mask_normalized = (segmentation_mask - segmentation_mask.min()) * (255.0 / (segmentation_mask.max() - segmentation_mask.min()))
mask_image = Image.fromarray(mask_normalized.astype(np.uint8)).convert("L")
# === Prepare Images ===
image.save("temp_input.png")
mask_image.save("temp_mask.png")
# === Get LLM Analysis ===
# Encode images for LLM
original_buffer = io.BytesIO()
image.save(original_buffer, format="PNG")
original_base64 = base64.b64encode(original_buffer.getvalue()).decode("utf-8")
mask_buffer = io.BytesIO()
mask_image.save(mask_buffer, format="PNG")
mask_base64 = base64.b64encode(mask_buffer.getvalue()).decode("utf-8")
# Get professional analysis from Gemini
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
message = HumanMessage(
content=[
{
"type": "text",
"text": " This is an image and its predicted binary mask showing manipulated regions in white. "
"Please explain briefly where the manipulation occurred and what might have been altered."
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{original_base64}"},
},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{mask_base64}"},
},
]
)
llm_response = llm.invoke([message]).content
# === Generate PDF Report ===
buffer = io.BytesIO()
c = canvas.Canvas(buffer, pagesize=A4)
width, height = A4
# === Professional Report Design ===
# Light blue background
c.setFillColorRGB(0.96, 0.96, 1)
c.rect(0, 0, width, height, fill=1, stroke=0)
# Dark blue header
c.setFillColorRGB(0, 0.2, 0.4)
c.rect(0, height-80, width, 80, fill=1, stroke=0)
# Title
c.setFillColorRGB(1, 1, 1)
c.setFont("Helvetica-Bold", 18)
c.drawCentredString(width/2, height-50, "DIGITAL IMAGE AUTHENTICITY REPORT")
c.setFont("Helvetica", 10)
c.drawCentredString(width/2, height-70, "Forensic Analysis Report")
# Metadata
c.setFillColorRGB(0, 0, 0)
c.setFont("Helvetica", 9)
c.drawString(40, height-100, f"Report Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
case_id = get_case_id()
c.drawString(width-200, height-100, f"Case ID: {case_id}")
# Divider
c.setStrokeColorRGB(0, 0.4, 0.6)
c.setLineWidth(1)
c.line(40, height-110, width-40, height-110)
# === Analysis Summary ===
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 12)
c.drawString(40, height-140, "EXECUTIVE SUMMARY")
c.setFillColorRGB(0, 0, 0)
c.setFont("Helvetica", 10)
summary_text = [
"This report presents forensic analysis of potential digital manipulations",
"using state-of-the-art AI detection models. Key findings are summarized below."
]
text_object = c.beginText(40, height-160)
text_object.setFont("Helvetica", 10)
text_object.setLeading(14)
for line in summary_text:
text_object.textLine(line)
c.drawText(text_object)
# === Image Evidence ===
img_y = height-420
img_width = 220
img_height = 220
# Original Image
c.drawImage("temp_input.png", 40, img_y, width=img_width, height=img_height)
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 10)
c.drawString(40, img_y-20, "ORIGINAL IMAGE")
# Detection Result
c.drawImage("temp_mask.png", width-260, img_y, width=img_width, height=img_height)
c.drawString(width-260, img_y-20, "DETECTION HEATMAP")
# === AI Analysis Section ===
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 12)
c.drawString(40, img_y-50, "AI FORENSIC ANALYSIS")
# Format LLM response with proper line breaks
from textwrap import wrap
analysis_lines = []
for paragraph in llm_response.split('\n'):
analysis_lines.extend(wrap(paragraph, width=90))
text_object = c.beginText(40, img_y-70)
text_object.setFont("Helvetica", 10)
text_object.setLeading(14)
# Show first 10 lines (adjust based on space)
for line in analysis_lines[:10]:
text_object.textLine(line)
if len(analysis_lines) > 10:
text_object.textLine("\n[Full analysis available in digital report]")
c.drawText(text_object)
# === Technical Details ===
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 12)
c.drawString(40, img_y-180, "TECHNICAL SPECIFICATIONS")
c.setFillColorRGB(0, 0, 0)
c.setFont("Helvetica", 10)
tech_details = [
f"Analysis Model: Mask2Former-Swin (ADE20K Fine-tuned)",
#f"Detection Threshold: {segmentation_mask.max():.2f} confidence",
f"Processing Date: {datetime.now().strftime('%Y-%m-%d')}",
"Report Version: 1.1"
]
text_object = c.beginText(40, img_y-200)
text_object.setFont("Helvetica", 10)
text_object.setLeading(14)
for line in tech_details:
text_object.textLine(line)
c.drawText(text_object)
# === Footer ===
c.setFillColorRGB(0, 0.2, 0.4)
c.rect(0, 40, width, 40, fill=1, stroke=0)
c.setFillColorRGB(1, 1, 1)
c.setFont("Helvetica", 8)
c.drawCentredString(width/2, 65, "This report was generated by AI forensic tools and should be verified by human experts")
c.drawCentredString(width/2, 55, "Sukkur IBA University | Digital Forensics Lab | © 2024 Deepfake Research Project")
c.save()
buffer.seek(0)
# Cleanup
os.remove("temp_input.png")
os.remove("temp_mask.png")
return send_file(
buffer,
mimetype='application/pdf',
as_attachment=True,
download_name=f"forensic_report_{datetime.now().strftime('%Y%m%d_%H%M')}.pdf"
)
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False)