Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from wordcloud import WordCloud
|
5 |
+
import pandas as pd
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
RATING_MAP = {
|
10 |
+
0: "Negative (⭐)",
|
11 |
+
1: "Neutral (⭐⭐)",
|
12 |
+
2: "Positive (⭐⭐⭐)"
|
13 |
+
}
|
14 |
+
|
15 |
+
# Load models
|
16 |
+
@st.cache_resource
|
17 |
+
def load_models():
|
18 |
+
sentiment_model = pipeline(
|
19 |
+
"text-classification",
|
20 |
+
model="AndrewLi403/CustomModel_tripadvisor_finetuned"
|
21 |
+
)
|
22 |
+
ner_model = pipeline("ner", model="dslim/bert-base-NER")
|
23 |
+
return sentiment_model, ner_model
|
24 |
+
|
25 |
+
# Sentiment analysis
|
26 |
+
def analyze_sentiment(text, model):
|
27 |
+
result = model(text)[0]
|
28 |
+
rating = int(result['label'].split('_')[-1]) # Get 0, 1, or 2
|
29 |
+
return {
|
30 |
+
'rating': rating,
|
31 |
+
'label': RATING_MAP[rating],
|
32 |
+
'score': result['score']
|
33 |
+
}
|
34 |
+
|
35 |
+
# Entity extraction
|
36 |
+
def extract_aspects(text, model):
|
37 |
+
entities = model(text)
|
38 |
+
aspects = []
|
39 |
+
current_entity = ""
|
40 |
+
|
41 |
+
# Merge subword tokens
|
42 |
+
for entity in entities:
|
43 |
+
if entity['word'].startswith('##'):
|
44 |
+
current_entity += entity['word'][2:]
|
45 |
+
else:
|
46 |
+
if current_entity:
|
47 |
+
aspects.append({
|
48 |
+
'entity': current_entity,
|
49 |
+
'type': prev_type
|
50 |
+
})
|
51 |
+
current_entity = entity['word']
|
52 |
+
prev_type = entity['entity']
|
53 |
+
|
54 |
+
if current_entity:
|
55 |
+
aspects.append({
|
56 |
+
'entity': current_entity,
|
57 |
+
'type': prev_type
|
58 |
+
})
|
59 |
+
|
60 |
+
return [a for a in aspects if a['type'] in ['PRODUCT', 'ORG', 'PERSON']]
|
61 |
+
|
62 |
+
# Visualization functions
|
63 |
+
def plot_sentiment_distribution(df):
|
64 |
+
fig, ax = plt.subplots()
|
65 |
+
df['label'].value_counts().loc[list(RATING_MAP.values())].plot.pie(
|
66 |
+
autopct='%1.1f%%',
|
67 |
+
colors=['#ff9999','#66b3ff','#99ff99'],
|
68 |
+
ax=ax
|
69 |
+
)
|
70 |
+
ax.set_ylabel('')
|
71 |
+
return fig
|
72 |
+
|
73 |
+
def plot_wordcloud(negative_reviews):
|
74 |
+
text = " ".join(negative_reviews)
|
75 |
+
wordcloud = WordCloud(
|
76 |
+
width=800,
|
77 |
+
height=400,
|
78 |
+
background_color='white',
|
79 |
+
colormap='Reds'
|
80 |
+
).generate(text)
|
81 |
+
|
82 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
83 |
+
ax.imshow(wordcloud, interpolation='bilinear')
|
84 |
+
ax.axis('off')
|
85 |
+
return fig
|
86 |
+
|
87 |
+
# Main app
|
88 |
+
def main():
|
89 |
+
st.title("Restaurant Review Analyzer")
|
90 |
+
st.markdown("Using fine-tuned model for sentiment and aspect analysis")
|
91 |
+
|
92 |
+
# Initialize models
|
93 |
+
sentiment_model, ner_model = load_models()
|
94 |
+
|
95 |
+
# Sidebar controls
|
96 |
+
st.sidebar.header("Analysis Options")
|
97 |
+
analysis_mode = st.sidebar.radio(
|
98 |
+
"Select Mode",
|
99 |
+
["Single Review", "Batch Analysis"]
|
100 |
+
)
|
101 |
+
|
102 |
+
# Initialize session state
|
103 |
+
if 'history' not in st.session_state:
|
104 |
+
st.session_state.history = pd.DataFrame(
|
105 |
+
columns=['text', 'rating', 'label', 'date', 'aspects']
|
106 |
+
)
|
107 |
+
|
108 |
+
if analysis_mode == "Single Review":
|
109 |
+
# Single review analysis
|
110 |
+
user_input = st.text_area("Enter or paste a restaurant review:", height=150)
|
111 |
+
|
112 |
+
if st.button("Analyze"):
|
113 |
+
if user_input:
|
114 |
+
with st.spinner("Analyzing..."):
|
115 |
+
# Sentiment analysis
|
116 |
+
sentiment = analyze_sentiment(user_input, sentiment_model)
|
117 |
+
|
118 |
+
# Aspect extraction
|
119 |
+
aspects = extract_aspects(user_input, ner_model)
|
120 |
+
|
121 |
+
# Save to history
|
122 |
+
new_entry = pd.DataFrame([{
|
123 |
+
'text': user_input,
|
124 |
+
'rating': sentiment['rating'],
|
125 |
+
'label': sentiment['label'],
|
126 |
+
'date': datetime.now(),
|
127 |
+
'aspects': aspects
|
128 |
+
}])
|
129 |
+
st.session_state.history = pd.concat(
|
130 |
+
[st.session_state.history, new_entry],
|
131 |
+
ignore_index=True
|
132 |
+
)
|
133 |
+
|
134 |
+
# Display results
|
135 |
+
st.subheader("Analysis Results")
|
136 |
+
col1, col2 = st.columns(2)
|
137 |
+
with col1:
|
138 |
+
st.metric("Rating", sentiment['label'])
|
139 |
+
with col2:
|
140 |
+
st.metric("Confidence", f"{sentiment['score']:.2f}")
|
141 |
+
|
142 |
+
if aspects:
|
143 |
+
st.subheader("Identified Aspects")
|
144 |
+
for aspect in aspects:
|
145 |
+
st.markdown(f"- **{aspect['type']}**: `{aspect['entity']}`)
|
146 |
+
else:
|
147 |
+
st.info("No specific entities identified")
|
148 |
+
else:
|
149 |
+
st.warning("Please enter a review")
|
150 |
+
|
151 |
+
else:
|
152 |
+
# Batch analysis mode
|
153 |
+
uploaded_file = st.file_uploader("Upload CSV file", type=["csv"])
|
154 |
+
|
155 |
+
if uploaded_file:
|
156 |
+
df = pd.read_csv(uploaded_file)
|
157 |
+
if 'text' not in df.columns:
|
158 |
+
st.error("CSV must contain 'text' column")
|
159 |
+
else:
|
160 |
+
if st.button("Analyze All"):
|
161 |
+
progress_bar = st.progress(0)
|
162 |
+
results = []
|
163 |
+
|
164 |
+
for i, row in enumerate(df.itertuples()):
|
165 |
+
sentiment = analyze_sentiment(row.text, sentiment_model)
|
166 |
+
aspects = extract_aspects(row.text, ner_model)
|
167 |
+
|
168 |
+
results.append({
|
169 |
+
'text': row.text,
|
170 |
+
'rating': sentiment['rating'],
|
171 |
+
'label': sentiment['label'],
|
172 |
+
'date': datetime.now(),
|
173 |
+
'aspects': aspects
|
174 |
+
})
|
175 |
+
|
176 |
+
progress_bar.progress((i + 1) / len(df))
|
177 |
+
|
178 |
+
st.session_state.history = pd.concat(
|
179 |
+
[st.session_state.history, pd.DataFrame(results)],
|
180 |
+
ignore_index=True
|
181 |
+
)
|
182 |
+
st.success(f"Completed analysis of {len(df)} reviews")
|
183 |
+
|
184 |
+
# Display historical data and visualizations
|
185 |
+
if not st.session_state.history.empty:
|
186 |
+
st.divider()
|
187 |
+
st.header("Analysis History")
|
188 |
+
|
189 |
+
# Raw data display
|
190 |
+
with st.expander("View Raw Data"):
|
191 |
+
st.dataframe(st.session_state.history)
|
192 |
+
|
193 |
+
# Visualizations
|
194 |
+
st.subheader("Sentiment Distribution")
|
195 |
+
fig1 = plot_sentiment_distribution(st.session_state.history)
|
196 |
+
st.pyplot(fig1)
|
197 |
+
|
198 |
+
# Negative reviews word cloud
|
199 |
+
negative_reviews = st.session_state.history[
|
200 |
+
st.session_state.history['rating'] == 0
|
201 |
+
]['text'].tolist()
|
202 |
+
|
203 |
+
if negative_reviews:
|
204 |
+
st.subheader("Negative Reviews Word Cloud")
|
205 |
+
fig2 = plot_wordcloud(negative_reviews)
|
206 |
+
st.pyplot(fig2)
|
207 |
+
else:
|
208 |
+
st.info("No negative reviews yet")
|
209 |
+
|
210 |
+
# Time trend analysis
|
211 |
+
if len(st.session_state.history) > 1:
|
212 |
+
st.subheader("Rating Trend Over Time")
|
213 |
+
time_df = st.session_state.history.copy()
|
214 |
+
time_df['date'] = pd.to_datetime(time_df['date'])
|
215 |
+
time_df = time_df.set_index('date').resample('D')['rating'].mean()
|
216 |
+
st.line_chart(time_df)
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
main()
|