|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model_path = "modernbert.bin" |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base") |
|
model = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) |
|
model.load_state_dict(torch.load(model_path, map_location=device)) |
|
model.to(device) |
|
model.eval() |
|
|
|
label_mapping = { |
|
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b', |
|
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b', |
|
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small', |
|
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it', |
|
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o', |
|
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b', |
|
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b', |
|
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b', |
|
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b', |
|
39: 'text-davinci-002', 40: 'text-davinci-003' |
|
} |
|
|
|
def classify_text(text): |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True) |
|
inputs = {key: value.to(device) for key, value in inputs.items()} |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
probabilities = torch.softmax(outputs.logits, dim=1)[0] |
|
predicted_class = torch.argmax(probabilities).item() |
|
confidence = probabilities[predicted_class].item() * 100 |
|
|
|
if predicted_class == 24: |
|
prediction_label = f"β
- The text is <span class='highlight-human'>**{confidence:.2f}%** likely <b>Human written</b>.</span>" |
|
model_info = "" |
|
else: |
|
prediction_label = f"π€ - The text is <span class='highlight-ai'>**{confidence:.2f}%** likely <b>AI generated</b>.</span>" |
|
model_info = f"**Identified AI Model:** {label_mapping[predicted_class]}" |
|
|
|
result_message = f"**Result:**\n\n{prediction_label}" |
|
if model_info: |
|
result_message += f"\n\n{model_info}" |
|
|
|
return result_message |
|
|
|
title = "Detect AI Generated Texts!" |
|
description = """ |
|
|
|
--- |
|
|
|
Detect AI-generated texts with precision using the new **ModernBERT** model, fine-tuned for machine-generated text detection which capable of identifying 40 different models. |
|
|
|
- π€ - **Identify AI Models:** Reveals which LLM generated the text if detected as AI. |
|
- β
- **Human Verification:** Marks human-written text with a green checkmark. |
|
|
|
**Note:** The longer the text, the better the detection accuracy. |
|
|
|
--- |
|
|
|
""" |
|
|
|
bottom_text = "**AI detection tool by SzegedAI**" |
|
|
|
iface = gr.Blocks(css=""" |
|
|
|
@import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap'); |
|
|
|
#text_input_box { |
|
border-radius: 10px; |
|
border: 2px solid #4CAF50; |
|
font-size: 18px; |
|
padding: 15px; |
|
margin-bottom: 20px; |
|
width: 60%; |
|
box-sizing: border-box; |
|
margin: auto; |
|
background-color: #1E1E2F; |
|
} |
|
|
|
#result_output_box { |
|
border-radius: 10px; |
|
border: 2px solid #4CAF50; |
|
font-size: 18px; |
|
padding: 15px; |
|
background-color: #2E2E3F; |
|
margin-top: 20px; |
|
width: 40%; |
|
box-sizing: border-box; |
|
text-align: center; |
|
margin: auto; |
|
} |
|
|
|
.form.svelte-633qhp { |
|
background: none; |
|
border: none; |
|
box-shadow: none; |
|
} |
|
|
|
body { |
|
background: #1E1E2F; |
|
color: #E1E1E6; |
|
font-family: 'Roboto Mono', sans-serif; |
|
padding: 20px; |
|
display: block; |
|
justify-content: center; |
|
align-items: center; |
|
height: 100vh; |
|
overflow-y: auto; |
|
} |
|
.gradio-container { |
|
border: 1px solid #4CAF50; |
|
border-radius: 15px; |
|
padding: 30px; |
|
box-shadow: 0px 0px 10px rgba(0,255,0,0.6); |
|
max-width: 600px; |
|
margin: auto; |
|
overflow-y: auto; |
|
} |
|
h1 { |
|
text-align: center; |
|
font-size: 28px; |
|
font-weight: bold; |
|
margin-bottom: 30px; |
|
} |
|
h2 { |
|
text-align: left; |
|
font-size: 28px; |
|
} |
|
.highlight-human { |
|
color: #4CAF50; |
|
font-weight: bold; |
|
background: rgba(76, 175, 80, 0.2); |
|
padding: 5px; |
|
border-radius: 8px; |
|
} |
|
.highlight-ai { |
|
color: #FF5733; |
|
font-weight: bold; |
|
background: rgba(255, 87, 51, 0.2); |
|
padding: 5px; |
|
border-radius: 8px; |
|
} |
|
#bottom_text { |
|
text-align: center; |
|
margin-top: 50px; |
|
font-weight: bold; |
|
font-size: 20px; |
|
color: #E1E1E6; |
|
} |
|
""") |
|
|
|
with iface: |
|
gr.Markdown(f"# {title}") |
|
gr.Markdown(description) |
|
text_input = gr.Textbox(label="", placeholder="Type or paste your content here...", elem_id="text_input_box", lines=5) |
|
result_output = gr.Markdown("**Results will appear here...**", elem_id="result_output_box") |
|
text_input.change(classify_text, inputs=text_input, outputs=result_output) |
|
gr.Markdown(bottom_text, elem_id="bottom_text") |
|
|
|
iface.launch(share=True) |
|
|