Spaces:
Running
Running
import gradio as gr | |
import requests | |
# Function to send your prompt to NVIDIA LLaMA 4 Scout | |
def talk_to_llama(prompt): | |
url = "https://api.nvcf.nvidia.com/v1/messages" # ✅ Correct endpoint | |
headers = { | |
"Authorization": "Bearer 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", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"messages": [{"role": "user", "content": prompt}] | |
} | |
response = requests.post(url, headers=headers, json=data) | |
try: | |
return response.json()["choices"][0]["message"]["content"] | |
except Exception as e: | |
return f"Something went wrong. Here's what the server said:\n{response.text}" | |
# Build the chatbot interface | |
chat = gr.Interface( | |
fn=talk_to_llama, | |
inputs="text", | |
outputs="text", | |
title="Chat with LLaMA 4 Scout", | |
description="Ask anything! This chatbot uses NVIDIA’s 3.5M token LLaMA 4 Scout model." | |
) | |
chat.launch() |