Spaces:
Sleeping
Sleeping
import gradio as gr | |
import PIL.Image as Image | |
from ultralytics import ASSETS, YOLO | |
from PIL import Image | |
import gradio as gr | |
model_path = '/home/mussie/Videos/mussie_doc/Model_testing_for_uniliver/new_data_improved_object_detector.pt' | |
model = YOLO(model_path) | |
def predict_image(img, conf_threshold, iou_threshold): | |
"""Predicts and plots labeled objects in an image using YOLOv8 model with adjustable confidence and IOU thresholds.""" | |
# Convert the input image to grayscale | |
img = img.convert('L') | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
return im | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
], | |
outputs=gr.Image(type="pil", label="Result"), | |
title="Ultralytics Gradio", | |
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.", | |
# examples=[ | |
# [ASSETS / "bus.jpg", 0.25, 0.45], | |
# [ASSETS / "zidane.jpg", 0.25, 0.45], | |
# ], | |
) | |
if __name__ == "__main__": | |
iface.launch() |