mussie1212's picture
Upload 2 files
d0fc0a3 verified
raw
history blame
1.44 kB
import gradio as gr
import PIL.Image as Image
from ultralytics import ASSETS, YOLO
from PIL import Image
import gradio as gr
model_path = '/home/mussie/Videos/mussie_doc/Model_testing_for_uniliver/new_data_improved_object_detector.pt'
model = YOLO(model_path)
def predict_image(img, conf_threshold, iou_threshold):
"""Predicts and plots labeled objects in an image using YOLOv8 model with adjustable confidence and IOU thresholds."""
# Convert the input image to grayscale
img = img.convert('L')
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=gr.Image(type="pil", label="Result"),
title="Ultralytics Gradio",
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.",
# examples=[
# [ASSETS / "bus.jpg", 0.25, 0.45],
# [ASSETS / "zidane.jpg", 0.25, 0.45],
# ],
)
if __name__ == "__main__":
iface.launch()