from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.responses import JSONResponse import logging from ultralytics import YOLO import numpy as np import cv2 from io import BytesIO from PIL import Image import base64 import os # Setup logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) app = FastAPI(title="Damage Detection API") # Log model file presence model_file = "damage_general_model.pt" if os.path.exists(model_file): logger.info(f"Model file found: {model_file}") else: logger.error(f"Model file missing: {model_file}") raise RuntimeError(f"Model file missing: {model_file}") # Load YOLO model try: logger.info("Loading damage model...") damage_model = YOLO(model_file) logger.info("Damage model loaded successfully") except Exception as e: logger.error(f"Failed to load model: {str(e)}") raise RuntimeError(f"Failed to load model: {str(e)}") def image_to_base64(img: np.ndarray) -> str: """Convert numpy image to base64 string.""" try: _, buffer = cv2.imencode(".png", img) return base64.b64encode(buffer).decode("utf-8") except Exception as e: logger.error(f"Error encoding image to base64: {str(e)}") raise @app.post("/predict", summary="Run inference on an image for damage detection") async def predict(file: UploadFile = File(...)): """Upload an image and get damage detection results.""" logger.info("Received image upload") try: contents = await file.read() image = Image.open(BytesIO(contents)).convert("RGB") img = np.array(image) logger.info(f"Image loaded: shape={img.shape}") blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8) damage_img = blank_img.copy() damage_text = "Damage: No detections" try: logger.info("Running damage detection...") damage_results = damage_model(img)[0] if damage_results.boxes: damage_img = damage_results.plot()[..., ::-1] damage_text = "Damage:\n" + "\n".join( f"- {damage_results.names[int(cls)]} ({conf:.2f})" for conf, cls in zip(damage_results.boxes.conf, damage_results.boxes.cls) ) logger.info("Damage detection completed") except Exception as e: damage_text = f"Damage: Error: {str(e)}" logger.error(f"Damage detection error: {str(e)}") damage_img_base64 = image_to_base64(damage_img) logger.info("Returning prediction results") return JSONResponse({ "damage_image": damage_img_base64, "damage_text": damage_text }) except Exception as e: logger.error(f"Inference error: {str(e)}") raise HTTPException(status_code=500, detail=f"Inference error: {str(e)}") @app.get("/", summary="Health check") async def root(): """Check if the API is running.""" logger.info("Health check accessed") return {"message": "Damage Detection API is running"}