from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.responses import JSONResponse import logging from ultralytics import YOLO import numpy as np import cv2 from io import BytesIO from PIL import Image import base64 import os # Setup logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) app = FastAPI(title="Car Parts & Damage Detection API") # Log model file presence model_files = ["car_part_detector_model.pt", "damage_general_model.pt"] for model_file in model_files: if os.path.exists(model_file): logger.info(f"Model file found: {model_file}") else: logger.error(f"Model file missing: {model_file}") # Load YOLO models try: logger.info("Loading car part model...") car_part_model = YOLO("car_part_detector_model.pt") logger.info("Car part model loaded successfully") logger.info("Loading damage model...") damage_model = YOLO("damage_general_model.pt") logger.info("Damage model loaded successfully") except Exception as e: logger.error(f"Failed to load models: {str(e)}") raise RuntimeError(f"Failed to load models: {str(e)}") def image_to_base64(img: np.ndarray) -> str: """Convert numpy image to base64 string.""" try: _, buffer = cv2.imencode(".png", img) return base64.b64encode(buffer).decode("utf-8") except Exception as e: logger.error(f"Error encoding image to base64: {str(e)}") raise @app.post("/predict", summary="Run inference on an image for car parts and damage") async def predict(file: UploadFile = File(...)): """Upload an image and get car parts and damage detection results.""" logger.info("Received image upload") try: contents = await file.read() image = Image.open(BytesIO(contents)).convert("RGB") img = np.array(image) logger.info(f"Image loaded: shape={img.shape}") blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8) car_part_img = blank_img.copy() damage_img = blank_img.copy() car_part_text = "Car Parts: No detections" damage_text = "Damage: No detections" try: logger.info("Running car part detection...") car_part_results = car_part_model(img)[0] if car_part_results.boxes: car_part_img = car_part_results.plot()[..., ::-1] car_part_text = "Car Parts:\n" + "\n".join( f"- {car_part_results.names[int(cls)]} ({conf:.2f})" for conf, cls in zip(car_part_results.boxes.conf, car_part_results.boxes.cls) ) logger.info("Car part detection completed") except Exception as e: car_part_text = f"Car Parts: Error: {str(e)}" logger.error(f"Car part detection error: {str(e)}") try: logger.info("Running damage detection...") damage_results = damage_model(img)[0] if damage_results.boxes: damage_img = damage_results.plot()[..., ::-1] damage_text = "Damage:\n" + "\n".join( f"- {damage_results.names[int(cls)]} ({conf:.2f})" for conf, cls in zip(damage_results.boxes.conf, damage_results.boxes.cls) ) logger.info("Damage detection completed") except Exception as e: damage_text = f"Damage: Error: {str(e)}" logger.error(f"Damage detection error: {str(e)}") car_part_img_base64 = image_to_base64(car_part_img) damage_img_base64 = image_to_base64(damage_img) logger.info("Returning prediction results") return JSONResponse({ "car_part_image": car_part_img_base64, "car_part_text": car_part_text, "damage_image": damage_img_base64, "damage_text": damage_text }) except Exception as e: logger.error(f"Inference error: {str(e)}") raise HTTPException(status_code=500, detail=f"Inference error: {str(e)}") @app.get("/", summary="Health check") async def root(): """Check if the API is running.""" logger.info("Health check accessed") return {"message": "Car Parts & Damage Detection API is running"}