MUSSIE1212 commited on
Commit
c36fae9
·
1 Parent(s): a0b1c85

Refactored app.py for single damage model analysis and removed unused car_part_detector_model.pt

Browse files
__pycache__/app.cpython-312.pyc CHANGED
Binary files a/__pycache__/app.cpython-312.pyc and b/__pycache__/app.cpython-312.pyc differ
 
app.py CHANGED
@@ -13,27 +13,24 @@ import os
13
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
14
  logger = logging.getLogger(__name__)
15
 
16
- app = FastAPI(title="Car Parts & Damage Detection API")
17
 
18
  # Log model file presence
19
- model_files = ["car_part_detector_model.pt", "damage_general_model.pt"]
20
- for model_file in model_files:
21
- if os.path.exists(model_file):
22
- logger.info(f"Model file found: {model_file}")
23
- else:
24
- logger.error(f"Model file missing: {model_file}")
25
 
26
- # Load YOLO models
27
  try:
28
- logger.info("Loading car part model...")
29
- car_part_model = YOLO("car_part_detector_model.pt")
30
- logger.info("Car part model loaded successfully")
31
  logger.info("Loading damage model...")
32
- damage_model = YOLO("damage_general_model.pt")
33
  logger.info("Damage model loaded successfully")
34
  except Exception as e:
35
- logger.error(f"Failed to load models: {str(e)}")
36
- raise RuntimeError(f"Failed to load models: {str(e)}")
37
 
38
  def image_to_base64(img: np.ndarray) -> str:
39
  """Convert numpy image to base64 string."""
@@ -44,9 +41,9 @@ def image_to_base64(img: np.ndarray) -> str:
44
  logger.error(f"Error encoding image to base64: {str(e)}")
45
  raise
46
 
47
- @app.post("/predict", summary="Run inference on an image for car parts and damage")
48
  async def predict(file: UploadFile = File(...)):
49
- """Upload an image and get car parts and damage detection results."""
50
  logger.info("Received image upload")
51
  try:
52
  contents = await file.read()
@@ -55,25 +52,9 @@ async def predict(file: UploadFile = File(...)):
55
  logger.info(f"Image loaded: shape={img.shape}")
56
 
57
  blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8)
58
- car_part_img = blank_img.copy()
59
  damage_img = blank_img.copy()
60
- car_part_text = "Car Parts: No detections"
61
  damage_text = "Damage: No detections"
62
 
63
- try:
64
- logger.info("Running car part detection...")
65
- car_part_results = car_part_model(img)[0]
66
- if car_part_results.boxes:
67
- car_part_img = car_part_results.plot()[..., ::-1]
68
- car_part_text = "Car Parts:\n" + "\n".join(
69
- f"- {car_part_results.names[int(cls)]} ({conf:.2f})"
70
- for conf, cls in zip(car_part_results.boxes.conf, car_part_results.boxes.cls)
71
- )
72
- logger.info("Car part detection completed")
73
- except Exception as e:
74
- car_part_text = f"Car Parts: Error: {str(e)}"
75
- logger.error(f"Car part detection error: {str(e)}")
76
-
77
  try:
78
  logger.info("Running damage detection...")
79
  damage_results = damage_model(img)[0]
@@ -88,12 +69,9 @@ async def predict(file: UploadFile = File(...)):
88
  damage_text = f"Damage: Error: {str(e)}"
89
  logger.error(f"Damage detection error: {str(e)}")
90
 
91
- car_part_img_base64 = image_to_base64(car_part_img)
92
  damage_img_base64 = image_to_base64(damage_img)
93
  logger.info("Returning prediction results")
94
  return JSONResponse({
95
- "car_part_image": car_part_img_base64,
96
- "car_part_text": car_part_text,
97
  "damage_image": damage_img_base64,
98
  "damage_text": damage_text
99
  })
@@ -105,4 +83,4 @@ async def predict(file: UploadFile = File(...)):
105
  async def root():
106
  """Check if the API is running."""
107
  logger.info("Health check accessed")
108
- return {"message": "Car Parts & Damage Detection API is running"}
 
13
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
14
  logger = logging.getLogger(__name__)
15
 
16
+ app = FastAPI(title="Damage Detection API")
17
 
18
  # Log model file presence
19
+ model_file = "/home/mussie/Documents/damage_detection_1/damage_general_model.pt"
20
+ if os.path.exists(model_file):
21
+ logger.info(f"Model file found: {model_file}")
22
+ else:
23
+ logger.error(f"Model file missing: {model_file}")
24
+ raise RuntimeError(f"Model file missing: {model_file}")
25
 
26
+ # Load YOLO model
27
  try:
 
 
 
28
  logger.info("Loading damage model...")
29
+ damage_model = YOLO(model_file)
30
  logger.info("Damage model loaded successfully")
31
  except Exception as e:
32
+ logger.error(f"Failed to load model: {str(e)}")
33
+ raise RuntimeError(f"Failed to load model: {str(e)}")
34
 
35
  def image_to_base64(img: np.ndarray) -> str:
36
  """Convert numpy image to base64 string."""
 
41
  logger.error(f"Error encoding image to base64: {str(e)}")
42
  raise
43
 
44
+ @app.post("/predict", summary="Run inference on an image for damage detection")
45
  async def predict(file: UploadFile = File(...)):
46
+ """Upload an image and get damage detection results."""
47
  logger.info("Received image upload")
48
  try:
49
  contents = await file.read()
 
52
  logger.info(f"Image loaded: shape={img.shape}")
53
 
54
  blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8)
 
55
  damage_img = blank_img.copy()
 
56
  damage_text = "Damage: No detections"
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  try:
59
  logger.info("Running damage detection...")
60
  damage_results = damage_model(img)[0]
 
69
  damage_text = f"Damage: Error: {str(e)}"
70
  logger.error(f"Damage detection error: {str(e)}")
71
 
 
72
  damage_img_base64 = image_to_base64(damage_img)
73
  logger.info("Returning prediction results")
74
  return JSONResponse({
 
 
75
  "damage_image": damage_img_base64,
76
  "damage_text": damage_text
77
  })
 
83
  async def root():
84
  """Check if the API is running."""
85
  logger.info("Health check accessed")
86
+ return {"message": "Damage Detection API is running"}
car_part_detector_model.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:919ed7512ffbee9013a1384c467c605e1b5beaa21319db6a306b5d0aa4180e9e
3
- size 6010902