|
from abc import abstractmethod |
|
from functools import partial |
|
import math |
|
|
|
import numpy as np |
|
import random |
|
import torch as th |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ldm.modules.diffusionmodules.util import ( |
|
conv_nd, |
|
linear, |
|
avg_pool_nd, |
|
zero_module, |
|
normalization, |
|
timestep_embedding, |
|
) |
|
from ldm.modules.attention import SpatialTransformer |
|
from torch.utils import checkpoint |
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, x, emb, context, objs): |
|
for layer in self: |
|
if isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
elif isinstance(layer, SpatialTransformer): |
|
x = layer(x, context, objs) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate( |
|
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" |
|
) |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd( |
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class ResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param use_checkpoint: if True, use gradient checkpointing on this module. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
use_checkpoint=False, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_checkpoint = use_checkpoint |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels), |
|
nn.SiLU(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module( |
|
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd( |
|
dims, channels, self.out_channels, 3, padding=1 |
|
) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
:param x: an [N x C x ...] Tensor of features. |
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
|
|
|
|
|
|
if self.use_checkpoint and x.requires_grad: |
|
return checkpoint.checkpoint(self._forward, x, emb ) |
|
else: |
|
return self._forward(x, emb) |
|
|
|
|
|
def _forward(self, x, emb): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = th.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
|
|
|
|
|
|
class UNetModel(nn.Module): |
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
use_checkpoint=False, |
|
num_heads=8, |
|
use_scale_shift_norm=False, |
|
transformer_depth=1, |
|
positive_len = 768, |
|
context_dim=None, |
|
fuser_type = None, |
|
is_inpaint = False, |
|
is_style = False, |
|
): |
|
super().__init__() |
|
|
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.use_checkpoint = use_checkpoint |
|
self.num_heads = num_heads |
|
self.positive_len = positive_len |
|
self.context_dim = context_dim |
|
self.fuser_type = fuser_type |
|
self.is_inpaint = is_inpaint |
|
self.is_style = is_style |
|
self.use_o2 = False |
|
assert fuser_type in ["gatedSA", "gatedCA"] |
|
|
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
|
|
total_in_channels = in_channels+in_channels+1 if self.is_inpaint else in_channels |
|
self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, total_in_channels, model_channels, 3, padding=1))]) |
|
|
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
|
|
|
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks): |
|
layers = [ ResBlock(ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm,) ] |
|
|
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
dim_head = ch // num_heads |
|
layers.append(SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint)) |
|
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
input_block_chans.append(ch) |
|
|
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( TimestepEmbedSequential( Downsample(ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
dim_head = ch // num_heads |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock(ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm), |
|
SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint), |
|
ResBlock(ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ ResBlock(ch + ich, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=model_channels * mult, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm) ] |
|
ch = model_channels * mult |
|
|
|
if ds in attention_resolutions: |
|
dim_head = ch // num_heads |
|
layers.append( SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint) ) |
|
if level and i == num_res_blocks: |
|
out_ch = ch |
|
layers.append( Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) |
|
ds //= 2 |
|
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
|
|
|
|
|
|
|
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), |
|
) |
|
|
|
if self.is_style: |
|
from .positionnet_with_image import PositionNet |
|
else: |
|
from .positionnet import PositionNet |
|
self.position_net = PositionNet(positive_len=positive_len, out_dim=context_dim) |
|
|
|
|
|
|
|
|
|
def forward_position_net(self,input): |
|
if ("boxes" in input): |
|
boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"] |
|
_ , self.max_box, _ = text_embeddings.shape |
|
else: |
|
dtype = input["x"].dtype |
|
batch = input["x"].shape[0] |
|
device = input["x"].device |
|
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) |
|
masks = th.zeros(batch, self.max_box).type(dtype).to(device) |
|
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) |
|
if self.training and random.random() < 0.1: |
|
boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0 |
|
|
|
objs = self.position_net( boxes, masks, text_embeddings ) |
|
|
|
return objs |
|
|
|
|
|
|
|
|
|
|
|
def forward_position_net_with_image(self,input): |
|
|
|
if ("boxes" in input): |
|
boxes = input["boxes"] |
|
masks = input["masks"] |
|
text_masks = input["text_masks"] |
|
image_masks = input["image_masks"] |
|
text_embeddings = input["text_embeddings"] |
|
image_embeddings = input["image_embeddings"] |
|
_ , self.max_box, _ = text_embeddings.shape |
|
else: |
|
dtype = input["x"].dtype |
|
batch = input["x"].shape[0] |
|
device = input["x"].device |
|
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) |
|
masks = th.zeros(batch, self.max_box).type(dtype).to(device) |
|
text_masks = th.zeros(batch, self.max_box).type(dtype).to(device) |
|
image_masks = th.zeros(batch, self.max_box).type(dtype).to(device) |
|
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) |
|
image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) |
|
|
|
if self.training and random.random() < 0.1: |
|
boxes = boxes*0 |
|
masks = masks*0 |
|
text_masks = text_masks*0 |
|
image_masks = image_masks*0 |
|
text_embeddings = text_embeddings*0 |
|
image_embeddings = image_embeddings*0 |
|
|
|
objs = self.position_net( boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings ) |
|
|
|
return objs |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, input): |
|
|
|
if self.is_style: |
|
objs = self.forward_position_net_with_image(input) |
|
else: |
|
objs = self.forward_position_net(input) |
|
|
|
|
|
hs = [] |
|
|
|
t_emb = timestep_embedding(input["timesteps"], self.model_channels, repeat_only=False) |
|
if self.use_o2: |
|
t_emb = t_emb.to(th.float16) |
|
emb = self.time_embed(t_emb) |
|
|
|
|
|
h = input["x"] |
|
if self.is_inpaint: |
|
h = th.cat( [h, input["inpainting_extra_input"]], dim=1 ) |
|
context = input["context"] |
|
|
|
|
|
for module in self.input_blocks: |
|
h = module(h, emb, context, objs) |
|
hs.append(h) |
|
|
|
h = self.middle_block(h, emb, context, objs) |
|
|
|
for module in self.output_blocks: |
|
h = th.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb, context, objs) |
|
|
|
return self.out(h) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|