|
import argparse, os, sys, glob |
|
import torch |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from tqdm import tqdm, trange |
|
from einops import rearrange |
|
from torchvision.utils import make_grid |
|
|
|
from ldm.util import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
sd = pl_sd["state_dict"] |
|
model = instantiate_from_config(config.model) |
|
m, u = model.load_state_dict(sd, strict=False) |
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
model.cuda() |
|
model.eval() |
|
return model |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--prompt", |
|
type=str, |
|
nargs="?", |
|
default="a painting of a virus monster playing guitar", |
|
help="the prompt to render" |
|
) |
|
|
|
parser.add_argument( |
|
"--outdir", |
|
type=str, |
|
nargs="?", |
|
help="dir to write results to", |
|
default="outputs/txt2img-samples" |
|
) |
|
parser.add_argument( |
|
"--ddim_steps", |
|
type=int, |
|
default=200, |
|
help="number of ddim sampling steps", |
|
) |
|
|
|
parser.add_argument( |
|
"--plms", |
|
action='store_true', |
|
help="use plms sampling", |
|
) |
|
|
|
parser.add_argument( |
|
"--ddim_eta", |
|
type=float, |
|
default=0.0, |
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling", |
|
) |
|
parser.add_argument( |
|
"--n_iter", |
|
type=int, |
|
default=1, |
|
help="sample this often", |
|
) |
|
|
|
parser.add_argument( |
|
"--H", |
|
type=int, |
|
default=256, |
|
help="image height, in pixel space", |
|
) |
|
|
|
parser.add_argument( |
|
"--W", |
|
type=int, |
|
default=256, |
|
help="image width, in pixel space", |
|
) |
|
|
|
parser.add_argument( |
|
"--n_samples", |
|
type=int, |
|
default=4, |
|
help="how many samples to produce for the given prompt", |
|
) |
|
|
|
parser.add_argument( |
|
"--scale", |
|
type=float, |
|
default=5.0, |
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", |
|
) |
|
opt = parser.parse_args() |
|
|
|
|
|
config = OmegaConf.load("configs/latent-diffusion/txt2img-1p4B-eval.yaml") |
|
model = load_model_from_config(config, "models/ldm/text2img-large/model.ckpt") |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
|
|
if opt.plms: |
|
sampler = PLMSSampler(model) |
|
else: |
|
sampler = DDIMSampler(model) |
|
|
|
os.makedirs(opt.outdir, exist_ok=True) |
|
outpath = opt.outdir |
|
|
|
prompt = opt.prompt |
|
|
|
|
|
sample_path = os.path.join(outpath, "samples") |
|
os.makedirs(sample_path, exist_ok=True) |
|
base_count = len(os.listdir(sample_path)) |
|
|
|
all_samples=list() |
|
with torch.no_grad(): |
|
with model.ema_scope(): |
|
uc = None |
|
if opt.scale != 1.0: |
|
uc = model.get_learned_conditioning(opt.n_samples * [""]) |
|
for n in trange(opt.n_iter, desc="Sampling"): |
|
c = model.get_learned_conditioning(opt.n_samples * [prompt]) |
|
shape = [4, opt.H//8, opt.W//8] |
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, |
|
conditioning=c, |
|
batch_size=opt.n_samples, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=opt.scale, |
|
unconditional_conditioning=uc, |
|
eta=opt.ddim_eta) |
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) |
|
|
|
for x_sample in x_samples_ddim: |
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png")) |
|
base_count += 1 |
|
all_samples.append(x_samples_ddim) |
|
|
|
|
|
|
|
grid = torch.stack(all_samples, 0) |
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w') |
|
grid = make_grid(grid, nrow=opt.n_samples) |
|
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() |
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png')) |
|
|
|
print(f"Your samples are ready and waiting four you here: \n{outpath} \nEnjoy.") |
|
|