import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import QwenImageEditPipeline import os # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Load the model pipeline pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device) # --- UI Constants and Helpers --- MAX_SEED = np.iinfo(np.int32).max # --- Main Inference Function (with hardcoded negative prompt) --- @spaces.GPU(duration=120) def infer( image, prompt, seed=42, randomize_seed=False, guidance_scale=4.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True), ): """ Generates an image using the local Qwen-Image diffusers pipeline. """ # Hardcode the negative prompt as requested negative_prompt = "text, watermark, copyright, blurry, low resolution" if randomize_seed: seed = random.randint(0, MAX_SEED) # Set up the generator for reproducibility generator = torch.Generator(device=device).manual_seed(seed) print(f"Calling pipeline with prompt: '{prompt}'") print(f"Negative Prompt: '{negative_prompt}'") print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {guidance_scale}") # Generate the image image = pipe( image, prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=guidance_scale, guidance_scale=1.0 # Use a fixed default for distilled guidance ).images[0] return image, seed # --- Examples and UI Layout --- examples = [] css = """ #col-container { margin: 0 auto; max-width: 1024px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML('Qwen-Image Logo') gr.HTML('

Edit

') gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", show_label=False, type="pil") prompt = gr.Text( label="Prompt", show_label=False, placeholder="describe the edit instruction", container=False, ) run_button = gr.Button("Edit!") result = gr.Image(label="Result", show_label=False, type="pil") with gr.Accordion("Advanced Settings", open=False): # Negative prompt UI element is removed here seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=4.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=30, ) # gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ input_image, prompt, # negative_prompt is no longer an input from the UI seed, randomize_seed, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()