import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoImageProcessor, AutoModelForImageClassification from PIL import Image import json import re import pandas as pd from datetime import datetime import plotly.express as px from io import StringIO # Load text model text_model_name = "microsoft/BiomedVLP-CXR-BERT-specialized" text_tokenizer = AutoTokenizer.from_pretrained(text_model_name) text_model = AutoModelForSequenceClassification.from_pretrained(text_model_name) # Load image model image_model_name = "aehrc/cxrmate-tf" # Replace with skin disease model if needed image_processor = AutoImageProcessor.from_pretrained(image_model_name) image_model = AutoModelForImageClassification.from_pretrained(image_model_name) # Define labels text_labels = ["Positive", "Negative", "Neutral", "Informative"] # For text analysis image_labels = ["Normal", "Abnormal"] # For X-ray or skin images # Store conversation state conversation_state = { "history": [], "texts": [], "image_uploaded": False, "last_analysis": None, "analysis_log": [] } # Extract key terms def extract_key_terms(text): terms = re.findall(r'\b(fever|cough|fatigue|headache|sore throat|chest pain|shortness of breath|rash|lesion|study|treatment|trial|astronaut|microgravity)\b', text, re.IGNORECASE) return terms # Generate context-aware follow-up questions def generate_follow_up(terms, history): if not terms: return "Please provide medical text (e.g., symptoms, abstract) or upload an image." if "astronaut" in [t.lower() for t in terms] or "microgravity" in [t.lower() for t in terms]: return "Are you researching space medicine? Please describe physiological data or symptoms in microgravity." if len(terms) < 3: return "Can you provide more details (e.g., duration of symptoms or study context)?" if not conversation_state["image_uploaded"]: return "Would you like to upload an image (e.g., X-ray or skin photo) for analysis?" return "Would you like to analyze another text or image, or export the analysis log?" # Main analysis function def analyze_medical_input(user_input, image=None, chat_history=None, export_format="None"): global conversation_state if not chat_history: chat_history = [] # Process text input text_response = "" text_chart = "" if user_input.strip(): terms = extract_key_terms(user_input) conversation_state["texts"].extend(terms) inputs = text_tokenizer(user_input, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): outputs = text_model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() confidence = torch.softmax(logits, dim=-1)[0][predicted_class_idx].item() scores = torch.softmax(logits, dim=-1)[0].tolist() conversation_state["last_analysis"] = { "type": "text", "label": text_labels[predicted_class_idx], "confidence": confidence, "scores": scores, "input": user_input, "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } conversation_state["analysis_log"].append(conversation_state["last_analysis"]) text_response = f"Text Analysis: {text_labels[predicted_class_idx]} (Confidence: {confidence:.2%})" # Text visualization (Chart.js) chart_data = { "type": "bar", "data": { "labels": text_labels, "datasets": [{ "label": "Confidence Scores", "data": scores, "backgroundColor": ["#4CAF50", "#F44336", "#2196F3", "#FF9800"], "borderColor": ["#388E3C", "#D32F2F", "#1976D2", "#F57C00"], "borderWidth": 1 }] }, "options": { "scales": { "y": {"beginAtZero": True, "max": 1, "title": {"display": True, "text": "Confidence"}}, "x": {"title": {"display": True, "text": "Text Categories"}} }, "plugins": {"title": {"display": True, "text": "Text Analysis Confidence"}} } } text_chart = f""" """ # Process image input image_response = "" image_chart = "" if image is not None: conversation_state["image_uploaded"] = True inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = image_model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() confidence = torch.softmax(logits, dim=-1)[0][predicted_class_idx].item() scores = torch.softmax(logits, dim=-1)[0].tolist() conversation_state["last_analysis"] = { "type": "image", "label": image_labels[predicted_class_idx], "confidence": confidence, "scores": scores, "input": "image", "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } conversation_state["analysis_log"].append(conversation_state["last_analysis"]) image_response = f"Image Analysis: {image_labels[predicted_class_idx]} (Confidence: {confidence:.2%})" # Image visualization (Chart.js) chart_data = { "type": "bar", "data": { "labels": image_labels, "datasets": [{ "label": "Confidence Scores", "data": scores, "backgroundColor": ["#4CAF50", "#F44336"], "borderColor": ["#388E3C", "#D32F2F"], "borderWidth": 1 }] }, "options": { "scales": { "y": {"beginAtZero": True, "max": 1, "title": {"display": True, "text": "Confidence"}}, "x": {"title": {"display": True, "text": "Image Categories"}} }, "plugins": {"title": {"display": True, "text": "Image Analysis Confidence"}} } } image_chart = f""" """ # Generate trend visualization (Plotly) trend_html = "" if len(conversation_state["analysis_log"]) > 1: df = pd.DataFrame(conversation_state["analysis_log"]) fig = px.line( df, x="timestamp", y="confidence", color="type", title="Analysis Confidence Over Time", labels={"confidence": "Confidence Score", "timestamp": "Time"} ) trend_html = fig.to_html(full_html=False) # Combine responses response = "\n".join([r for r in [text_response, image_response] if r]) if not response: response = "No analysis yet. Please provide text or upload an image." response += f"\n\nFollow-Up: {generate_follow_up(conversation_state['texts'], conversation_state['history'])}" response += f"\n\n{text_chart}\n{image_chart}\n{trend_html}" # Handle export if export_format != "None": df = pd.DataFrame(conversation_state["analysis_log"]) if export_format == "JSON": export_data = df.to_json(orient="records") return response, gr.File(value=StringIO(export_data), file_name="analysis_log.json") elif export_format == "CSV": export_data = df.to_csv(index=False) return response, gr.File(value=StringIO(export_data), file_name="analysis_log.csv") # Add disclaimer disclaimer = "⚠️ This tool is for research purposes only and does not provide medical diagnoses. Consult a healthcare professional for medical advice." response += f"\n\n{disclaimer}" conversation_state["history"].append((user_input, response)) return response # Custom CSS for professional UI css = """ body { background-color: #f0f2f5; font-family: 'Segoe UI', Arial, sans-serif; } .gradio-container { max-width: 900px; margin: auto; padding: 30px; background: white; border-radius: 10px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); } h1 { color: #1a3c5e; text-align: center; font-size: 2em; } input, textarea { border-radius: 8px; border: 1px solid #ccc; padding: 10px; } button { background: linear-gradient(90deg, #3498db, #2980b9); color: white; border-radius: 8px; padding: 12px; font-weight: bold; } button:hover { background: linear-gradient(90deg, #2980b9, #1a6ea6); } #export_dropdown { width: 150px; margin-top: 10px; } """ # Create Gradio interface with gr.Blocks(css=css) as iface: gr.Markdown("# Ultra-Advanced Medical Research Chatbot") gr.Markdown("Analyze medical texts or images for research purposes. Supports symptom analysis, literature review, or space medicine research. Not for medical diagnosis.") with gr.Row(): with gr.Column(scale=2): text_input = gr.Textbox(lines=5, placeholder="Enter symptoms, medical abstract, or space medicine data...") image_input = gr.Image(type="pil", label="Upload X-ray or Skin Image") export_dropdown = gr.Dropdown(choices=["None", "JSON", "CSV"], label="Export Log", value="None") submit_button = gr.Button("Analyze") with gr.Column(scale=3): output = gr.HTML() submit_button.click( fn=analyze_medical_input, inputs=[text_input, image_input, gr.State(), export_dropdown], outputs=[output, gr.File()] ) # Launch the interface iface.launch()