File size: 10,067 Bytes
3cd3c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import json
import re
import pandas as pd
from datetime import datetime
import plotly.express as px
from io import StringIO

# Load text model
text_model_name = "microsoft/BiomedVLP-CXR-BERT-specialized"
text_tokenizer = AutoTokenizer.from_pretrained(text_model_name)
text_model = AutoModelForSequenceClassification.from_pretrained(text_model_name)

# Load image model
image_model_name = "aehrc/cxrmate-tf"  # Replace with skin disease model if needed
image_processor = AutoImageProcessor.from_pretrained(image_model_name)
image_model = AutoModelForImageClassification.from_pretrained(image_model_name)

# Define labels
text_labels = ["Positive", "Negative", "Neutral", "Informative"]  # For text analysis
image_labels = ["Normal", "Abnormal"]  # For X-ray or skin images

# Store conversation state
conversation_state = {
    "history": [],
    "texts": [],
    "image_uploaded": False,
    "last_analysis": None,
    "analysis_log": []
}

# Extract key terms
def extract_key_terms(text):
    terms = re.findall(r'\b(fever|cough|fatigue|headache|sore throat|chest pain|shortness of breath|rash|lesion|study|treatment|trial|astronaut|microgravity)\b', text, re.IGNORECASE)
    return terms

# Generate context-aware follow-up questions
def generate_follow_up(terms, history):
    if not terms:
        return "Please provide medical text (e.g., symptoms, abstract) or upload an image."
    if "astronaut" in [t.lower() for t in terms] or "microgravity" in [t.lower() for t in terms]:
        return "Are you researching space medicine? Please describe physiological data or symptoms in microgravity."
    if len(terms) < 3:
        return "Can you provide more details (e.g., duration of symptoms or study context)?"
    if not conversation_state["image_uploaded"]:
        return "Would you like to upload an image (e.g., X-ray or skin photo) for analysis?"
    return "Would you like to analyze another text or image, or export the analysis log?"

# Main analysis function
def analyze_medical_input(user_input, image=None, chat_history=None, export_format="None"):
    global conversation_state
    if not chat_history:
        chat_history = []

    # Process text input
    text_response = ""
    text_chart = ""
    if user_input.strip():
        terms = extract_key_terms(user_input)
        conversation_state["texts"].extend(terms)
        inputs = text_tokenizer(user_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
        with torch.no_grad():
            outputs = text_model(**inputs)
        logits = outputs.logits
        predicted_class_idx = logits.argmax(-1).item()
        confidence = torch.softmax(logits, dim=-1)[0][predicted_class_idx].item()
        scores = torch.softmax(logits, dim=-1)[0].tolist()
        conversation_state["last_analysis"] = {
            "type": "text",
            "label": text_labels[predicted_class_idx],
            "confidence": confidence,
            "scores": scores,
            "input": user_input,
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        conversation_state["analysis_log"].append(conversation_state["last_analysis"])
        text_response = f"Text Analysis: {text_labels[predicted_class_idx]} (Confidence: {confidence:.2%})"

        # Text visualization (Chart.js)
        chart_data = {
            "type": "bar",
            "data": {
                "labels": text_labels,
                "datasets": [{
                    "label": "Confidence Scores",
                    "data": scores,
                    "backgroundColor": ["#4CAF50", "#F44336", "#2196F3", "#FF9800"],
                    "borderColor": ["#388E3C", "#D32F2F", "#1976D2", "#F57C00"],
                    "borderWidth": 1
                }]
            },
            "options": {
                "scales": {
                    "y": {"beginAtZero": True, "max": 1, "title": {"display": True, "text": "Confidence"}},
                    "x": {"title": {"display": True, "text": "Text Categories"}}
                },
                "plugins": {"title": {"display": True, "text": "Text Analysis Confidence"}}
            }
        }
        text_chart = f"""
        <canvas id='textChart' width='400' height='200'></canvas>
        <script src='https://cdn.jsdelivr.net/npm/chart.js'></script>
        <script>
            new Chart(document.getElementById('textChart'), {json.dumps(chart_data)});
        </script>
        """

    # Process image input
    image_response = ""
    image_chart = ""
    if image is not None:
        conversation_state["image_uploaded"] = True
        inputs = image_processor(images=image, return_tensors="pt")
        with torch.no_grad():
            outputs = image_model(**inputs)
        logits = outputs.logits
        predicted_class_idx = logits.argmax(-1).item()
        confidence = torch.softmax(logits, dim=-1)[0][predicted_class_idx].item()
        scores = torch.softmax(logits, dim=-1)[0].tolist()
        conversation_state["last_analysis"] = {
            "type": "image",
            "label": image_labels[predicted_class_idx],
            "confidence": confidence,
            "scores": scores,
            "input": "image",
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        conversation_state["analysis_log"].append(conversation_state["last_analysis"])
        image_response = f"Image Analysis: {image_labels[predicted_class_idx]} (Confidence: {confidence:.2%})"

        # Image visualization (Chart.js)
        chart_data = {
            "type": "bar",
            "data": {
                "labels": image_labels,
                "datasets": [{
                    "label": "Confidence Scores",
                    "data": scores,
                    "backgroundColor": ["#4CAF50", "#F44336"],
                    "borderColor": ["#388E3C", "#D32F2F"],
                    "borderWidth": 1
                }]
            },
            "options": {
                "scales": {
                    "y": {"beginAtZero": True, "max": 1, "title": {"display": True, "text": "Confidence"}},
                    "x": {"title": {"display": True, "text": "Image Categories"}}
                },
                "plugins": {"title": {"display": True, "text": "Image Analysis Confidence"}}
            }
        }
        image_chart = f"""
        <canvas id='imageChart' width='400' height='200'></canvas>
        <script src='https://cdn.jsdelivr.net/npm/chart.js'></script>
        <script>
            new Chart(document.getElementById('imageChart'), {json.dumps(chart_data)});
        </script>
        """

    # Generate trend visualization (Plotly)
    trend_html = ""
    if len(conversation_state["analysis_log"]) > 1:
        df = pd.DataFrame(conversation_state["analysis_log"])
        fig = px.line(
            df, x="timestamp", y="confidence", color="type",
            title="Analysis Confidence Over Time",
            labels={"confidence": "Confidence Score", "timestamp": "Time"}
        )
        trend_html = fig.to_html(full_html=False)

    # Combine responses
    response = "\n".join([r for r in [text_response, image_response] if r])
    if not response:
        response = "No analysis yet. Please provide text or upload an image."
    response += f"\n\nFollow-Up: {generate_follow_up(conversation_state['texts'], conversation_state['history'])}"
    response += f"\n\n{text_chart}\n{image_chart}\n{trend_html}"

    # Handle export
    if export_format != "None":
        df = pd.DataFrame(conversation_state["analysis_log"])
        if export_format == "JSON":
            export_data = df.to_json(orient="records")
            return response, gr.File(value=StringIO(export_data), file_name="analysis_log.json")
        elif export_format == "CSV":
            export_data = df.to_csv(index=False)
            return response, gr.File(value=StringIO(export_data), file_name="analysis_log.csv")

    # Add disclaimer
    disclaimer = "⚠️ This tool is for research purposes only and does not provide medical diagnoses. Consult a healthcare professional for medical advice."
    response += f"\n\n{disclaimer}"

    conversation_state["history"].append((user_input, response))
    return response

# Custom CSS for professional UI
css = """
body { background-color: #f0f2f5; font-family: 'Segoe UI', Arial, sans-serif; }
.gradio-container { max-width: 900px; margin: auto; padding: 30px; background: white; border-radius: 10px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); }
h1 { color: #1a3c5e; text-align: center; font-size: 2em; }
input, textarea { border-radius: 8px; border: 1px solid #ccc; padding: 10px; }
button { background: linear-gradient(90deg, #3498db, #2980b9); color: white; border-radius: 8px; padding: 12px; font-weight: bold; }
button:hover { background: linear-gradient(90deg, #2980b9, #1a6ea6); }
#export_dropdown { width: 150px; margin-top: 10px; }
"""

# Create Gradio interface
with gr.Blocks(css=css) as iface:
    gr.Markdown("# Ultra-Advanced Medical Research Chatbot")
    gr.Markdown("Analyze medical texts or images for research purposes. Supports symptom analysis, literature review, or space medicine research. Not for medical diagnosis.")
    with gr.Row():
        with gr.Column(scale=2):
            text_input = gr.Textbox(lines=5, placeholder="Enter symptoms, medical abstract, or space medicine data...")
            image_input = gr.Image(type="pil", label="Upload X-ray or Skin Image")
            export_dropdown = gr.Dropdown(choices=["None", "JSON", "CSV"], label="Export Log", value="None")
            submit_button = gr.Button("Analyze")
        with gr.Column(scale=3):
            output = gr.HTML()
    submit_button.click(
        fn=analyze_medical_input,
        inputs=[text_input, image_input, gr.State(), export_dropdown],
        outputs=[output, gr.File()]
    )

# Launch the interface
iface.launch()