Spaces:
Runtime error
Runtime error
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- app.py +10 -4
- pyproject.toml +1 -1
- src/f5_tts/infer/SHARED.md +11 -0
- src/f5_tts/infer/utils_infer.py +31 -27
app.py
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
|
4 |
import gc
|
5 |
import json
|
|
|
6 |
import re
|
7 |
import tempfile
|
8 |
from collections import OrderedDict
|
@@ -41,6 +42,7 @@ from f5_tts.infer.utils_infer import (
|
|
41 |
preprocess_ref_audio_text,
|
42 |
remove_silence_for_generated_wav,
|
43 |
save_spectrogram,
|
|
|
44 |
)
|
45 |
from f5_tts.model import DiT, UNetT
|
46 |
|
@@ -189,16 +191,20 @@ def infer(
|
|
189 |
|
190 |
# Remove silence
|
191 |
if remove_silence:
|
192 |
-
with tempfile.NamedTemporaryFile(suffix=".wav") as f:
|
193 |
-
|
|
|
|
|
194 |
remove_silence_for_generated_wav(f.name)
|
195 |
final_wave, _ = torchaudio.load(f.name)
|
|
|
|
|
196 |
final_wave = final_wave.squeeze().cpu().numpy()
|
197 |
|
198 |
# Save the spectrogram
|
199 |
-
with tempfile.NamedTemporaryFile(suffix=".png",
|
200 |
spectrogram_path = tmp_spectrogram.name
|
201 |
-
|
202 |
|
203 |
return (final_sample_rate, final_wave), spectrogram_path, ref_text, used_seed
|
204 |
|
|
|
3 |
|
4 |
import gc
|
5 |
import json
|
6 |
+
import os
|
7 |
import re
|
8 |
import tempfile
|
9 |
from collections import OrderedDict
|
|
|
42 |
preprocess_ref_audio_text,
|
43 |
remove_silence_for_generated_wav,
|
44 |
save_spectrogram,
|
45 |
+
tempfile_kwargs,
|
46 |
)
|
47 |
from f5_tts.model import DiT, UNetT
|
48 |
|
|
|
191 |
|
192 |
# Remove silence
|
193 |
if remove_silence:
|
194 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", **tempfile_kwargs) as f:
|
195 |
+
temp_path = f.name
|
196 |
+
try:
|
197 |
+
sf.write(temp_path, final_wave, final_sample_rate)
|
198 |
remove_silence_for_generated_wav(f.name)
|
199 |
final_wave, _ = torchaudio.load(f.name)
|
200 |
+
finally:
|
201 |
+
os.unlink(temp_path)
|
202 |
final_wave = final_wave.squeeze().cpu().numpy()
|
203 |
|
204 |
# Save the spectrogram
|
205 |
+
with tempfile.NamedTemporaryFile(suffix=".png", **tempfile_kwargs) as tmp_spectrogram:
|
206 |
spectrogram_path = tmp_spectrogram.name
|
207 |
+
save_spectrogram(combined_spectrogram, spectrogram_path)
|
208 |
|
209 |
return (final_sample_rate, final_wave), spectrogram_path, ref_text, used_seed
|
210 |
|
pyproject.toml
CHANGED
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
4 |
|
5 |
[project]
|
6 |
name = "f5-tts"
|
7 |
-
version = "1.1.
|
8 |
description = "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching"
|
9 |
readme = "README.md"
|
10 |
license = {text = "MIT License"}
|
|
|
4 |
|
5 |
[project]
|
6 |
name = "f5-tts"
|
7 |
+
version = "1.1.5"
|
8 |
description = "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching"
|
9 |
readme = "README.md"
|
10 |
license = {text = "MIT License"}
|
src/f5_tts/infer/SHARED.md
CHANGED
@@ -33,6 +33,8 @@
|
|
33 |
- [F5-TTS Base @ ru @ HotDro4illa](#f5-tts-base--ru--hotdro4illa)
|
34 |
- [Spanish](#spanish)
|
35 |
- [F5-TTS Base @ es @ jpgallegoar](#f5-tts-base--es--jpgallegoar)
|
|
|
|
|
36 |
|
37 |
|
38 |
## Multilingual
|
@@ -173,3 +175,12 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
|
173 |
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/jpgallegoar/F5-Spanish)|[Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli) & Crowdsourced & TEDx, 218 hours|cc0-1.0|
|
174 |
|
175 |
- @jpgallegoar [GitHub repo](https://github.com/jpgallegoar/Spanish-F5), Jupyter Notebook and Gradio usage for Spanish model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
- [F5-TTS Base @ ru @ HotDro4illa](#f5-tts-base--ru--hotdro4illa)
|
34 |
- [Spanish](#spanish)
|
35 |
- [F5-TTS Base @ es @ jpgallegoar](#f5-tts-base--es--jpgallegoar)
|
36 |
+
- [German](#german)
|
37 |
+
- [F5-TTS Base @ de @ hvoss-techfak](#f5-tts-base--de--hvoss-techfak)
|
38 |
|
39 |
|
40 |
## Multilingual
|
|
|
175 |
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/jpgallegoar/F5-Spanish)|[Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli) & Crowdsourced & TEDx, 218 hours|cc0-1.0|
|
176 |
|
177 |
- @jpgallegoar [GitHub repo](https://github.com/jpgallegoar/Spanish-F5), Jupyter Notebook and Gradio usage for Spanish model.
|
178 |
+
|
179 |
+
## German
|
180 |
+
|
181 |
+
#### F5-TTS Base @ de @ hvoss-techfak
|
182 |
+
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
183 |
+
|:---:|:------------:|:-----------:|:-------------:|
|
184 |
+
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/hvoss-techfak/F5-TTS-German)|[Mozilla Common Voice 19.0](https://commonvoice.mozilla.org/en/datasets) & 800 hours Crowdsourced |cc-by-nc-4.0|
|
185 |
+
|
186 |
+
- Finetuned by [@hvoss-techfak](https://github.com/hvoss-techfak)
|
src/f5_tts/infer/utils_infer.py
CHANGED
@@ -45,6 +45,8 @@ device = (
|
|
45 |
else "cpu"
|
46 |
)
|
47 |
|
|
|
|
|
48 |
# -----------------------------------------
|
49 |
|
50 |
target_sample_rate = 24000
|
@@ -306,42 +308,44 @@ def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print):
|
|
306 |
ref_audio = _ref_audio_cache[audio_hash]
|
307 |
|
308 |
else: # first pass, do preprocess
|
309 |
-
with tempfile.NamedTemporaryFile(
|
310 |
-
|
|
|
|
|
311 |
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
non_silent_segs = silence.split_on_silence(
|
314 |
-
aseg, min_silence_len=
|
315 |
)
|
316 |
non_silent_wave = AudioSegment.silent(duration=0)
|
317 |
for non_silent_seg in non_silent_segs:
|
318 |
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
|
319 |
-
show_info("Audio is over 12s, clipping short. (
|
320 |
break
|
321 |
non_silent_wave += non_silent_seg
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
non_silent_wave += non_silent_seg
|
334 |
-
|
335 |
-
aseg = non_silent_wave
|
336 |
-
|
337 |
-
# 3. if no proper silence found for clipping
|
338 |
-
if len(aseg) > 12000:
|
339 |
-
aseg = aseg[:12000]
|
340 |
-
show_info("Audio is over 12s, clipping short. (3)")
|
341 |
-
|
342 |
-
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
|
343 |
-
aseg.export(f.name, format="wav")
|
344 |
-
ref_audio = f.name
|
345 |
|
346 |
# Cache the processed reference audio
|
347 |
_ref_audio_cache[audio_hash] = ref_audio
|
|
|
45 |
else "cpu"
|
46 |
)
|
47 |
|
48 |
+
tempfile_kwargs = {"delete_on_close": False} if sys.version_info >= (3, 12) else {"delete": False}
|
49 |
+
|
50 |
# -----------------------------------------
|
51 |
|
52 |
target_sample_rate = 24000
|
|
|
308 |
ref_audio = _ref_audio_cache[audio_hash]
|
309 |
|
310 |
else: # first pass, do preprocess
|
311 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", **tempfile_kwargs) as f:
|
312 |
+
temp_path = f.name
|
313 |
+
|
314 |
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
315 |
|
316 |
+
# 1. try to find long silence for clipping
|
317 |
+
non_silent_segs = silence.split_on_silence(
|
318 |
+
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
|
319 |
+
)
|
320 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
321 |
+
for non_silent_seg in non_silent_segs:
|
322 |
+
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
|
323 |
+
show_info("Audio is over 12s, clipping short. (1)")
|
324 |
+
break
|
325 |
+
non_silent_wave += non_silent_seg
|
326 |
+
|
327 |
+
# 2. try to find short silence for clipping if 1. failed
|
328 |
+
if len(non_silent_wave) > 12000:
|
329 |
non_silent_segs = silence.split_on_silence(
|
330 |
+
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
|
331 |
)
|
332 |
non_silent_wave = AudioSegment.silent(duration=0)
|
333 |
for non_silent_seg in non_silent_segs:
|
334 |
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
|
335 |
+
show_info("Audio is over 12s, clipping short. (2)")
|
336 |
break
|
337 |
non_silent_wave += non_silent_seg
|
338 |
|
339 |
+
aseg = non_silent_wave
|
340 |
+
|
341 |
+
# 3. if no proper silence found for clipping
|
342 |
+
if len(aseg) > 12000:
|
343 |
+
aseg = aseg[:12000]
|
344 |
+
show_info("Audio is over 12s, clipping short. (3)")
|
345 |
+
|
346 |
+
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
|
347 |
+
aseg.export(temp_path, format="wav")
|
348 |
+
ref_audio = temp_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
# Cache the processed reference audio
|
351 |
_ref_audio_cache[audio_hash] = ref_audio
|