LLMDet-demo / app.py
mrdbourke's picture
Update app.py
69f0b8f verified
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import GroundingDinoProcessor
from modeling_grounding_dino import GroundingDinoForObjectDetection
from PIL import Image, ImageDraw, ImageFont
from itertools import cycle
import gradio as gr
import spaces
# Load model and processor
model_id = "fushh7/llmdet_swin_large_hf"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[INFO] Using device: {DEVICE}")
print(f"[INFO] Loading model from {model_id}...")
processor = GroundingDinoProcessor.from_pretrained(model_id)
model = GroundingDinoForObjectDetection.from_pretrained(model_id).to(DEVICE)
model.eval();
print("[INFO] Model loaded successfully.")
# Pre-defined palette (extend or tweak as you like)
BOX_COLORS = [
"deepskyblue", "red", "lime", "dodgerblue",
"cyan", "magenta", "yellow",
"orange", "chartreuse"
]
def draw_boxes(image, boxes, labels, scores, colors=BOX_COLORS, font_path="arial.ttf", font_size=16):
"""
Draw bounding boxes and labels on a PIL Image.
:param image: PIL Image object
:param boxes: Iterable of [x_min, y_min, x_max, y_max]
:param labels: Iterable of label strings
:param scores: Iterable of scalar confidences (0-1)
:param colors: List/tuple of colour names or RGB tuples
:param font_path: Path to a TTF font for labels
:param font_size: Int size of font to use, default 16
:return: PIL Image with drawn boxes
"""
# Ensure we can iterate colours indefinitely
colour_cycle = cycle(colors)
draw = ImageDraw.Draw(image)
# Pick a font (fallback to default if missing)
try:
font = ImageFont.truetype(font_path, size=font_size)
except IOError:
font = ImageFont.load_default(size=font_size)
# Assign a consistent colour per label (optional)
label_to_colour = {}
for box, label, score in zip(boxes, labels, scores):
# Reuse colour if label seen before, else take next from cycle
colour = label_to_colour.setdefault(label, next(colour_cycle))
x_min, y_min, x_max, y_max = map(int, box)
# Draw rectangle
draw.rectangle([x_min, y_min, x_max, y_max], outline=colour, width=2)
# Compose text
text = f"{label} ({score:.3f})"
text_size = draw.textbbox((0, 0), text, font=font)[2:]
# Draw text background for legibility
bg_coords = [x_min, y_min - text_size[1] - 4,
x_min + text_size[0] + 4, y_min]
draw.rectangle(bg_coords, fill=colour)
# Draw text
draw.text((x_min + 2, y_min - text_size[1] - 2),
text, fill="black", font=font)
return image
def resize_image_max_dimension(image, max_size=1024):
"""
Resize an image so that the longest side is at most max_size pixels,
while maintaining the aspect ratio.
:param image: PIL Image object
:param max_size: Maximum dimension in pixels (default: 1024)
:return: PIL Image object (resized)
"""
width, height = image.size
# Check if resizing is needed
if max(width, height) <= max_size:
return image
# Calculate new dimensions maintaining aspect ratio
ratio = max_size / max(width, height)
new_width = int(width * ratio)
new_height = int(height * ratio)
# Resize the image using high-quality resampling
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
@spaces.GPU(duration=120)
def detect_and_draw(
img: Image.Image,
text_query: str,
box_threshold: float = 0.4,
text_threshold: float = 0.3
) -> Image.Image:
"""
Detect objects described in `text_query`, draw boxes, return the image.
Note: `text_query` must be lowercase and each concept ends with a dot
(e.g. 'a cat. a remote control.')
"""
# Make sure text is lowered
text_query = text_query.lower()
# If the image size is too large, we make it smaller
img = resize_image_max_dimension(img, max_size=1024)
# Preprocess the image
inputs = processor(images=img, text=text_query, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=box_threshold,
text_threshold=text_threshold,
target_sizes=[img.size[::-1]]
)[0]
img_out = img.copy()
img_out = draw_boxes(
img_out,
boxes = results["boxes"].cpu().numpy(),
labels = results.get("text_labels", results.get("labels", [])),
scores = results["scores"]
)
return img_out
# Create example list
examples = [
["examples/IMG_8920.jpeg", "bin. water bottle. hand. shoe.", 0.4, 0.3],
["examples/IMG_9435.jpeg", "lettuce. orange slices (group). eggs (group). cheese (group). red cabbage. pear slices (group).", 0.4, 0.3],
]
# Create Gradio demo
demo = gr.Interface(
fn = detect_and_draw,
inputs = [
gr.Image(type="pil", label="Image"),
gr.Textbox(value="",
label="Text Query (lowercase, end each with '.', for example 'a bird. a tree.')"),
gr.Slider(0.0, 1.0, 0.4, 0.05, label="Box Threshold"),
gr.Slider(0.0, 1.0, 0.3, 0.05, label="Text Threshold")
],
outputs = gr.Image(type="pil", label="Detections"),
title = "LLMDet Demo: Open-Vocabulary Grounded Object Detection",
description = f"""Upload an image, enter text queries, and adjust thresholds to see detections.
Adapted from LLMDet GitHub repo [Hugging Face demo](https://github.com/iSEE-Laboratory/LLMDet/tree/main/hf_model).
This space uses: {model_id}
See original:
* [LLMDet GitHub](https://github.com/iSEE-Laboratory/LLMDet/tree/main?tab=readme-ov-file)
* [LLMDet Paper](https://arxiv.org/abs/2501.18954) - LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models
* LLMDet model checkpoints:
* [Tiny](https://huggingface.co/fushh7/llmdet_swin_tiny_hf) (173M params)
* [Base](https://huggingface.co/fushh7/llmdet_swin_base_hf) (233M params)
* [Large](https://huggingface.co/fushh7/llmdet_swin_large_hf) (344M params)
""",
examples = examples,
cache_examples = True,
)
demo.launch()