Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import GroundingDinoProcessor | |
from modeling_grounding_dino import GroundingDinoForObjectDetection | |
from PIL import Image, ImageDraw, ImageFont | |
from itertools import cycle | |
import gradio as gr | |
import spaces | |
# Load model and processor | |
model_id = "fushh7/llmdet_swin_large_hf" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"[INFO] Using device: {DEVICE}") | |
print(f"[INFO] Loading model from {model_id}...") | |
processor = GroundingDinoProcessor.from_pretrained(model_id) | |
model = GroundingDinoForObjectDetection.from_pretrained(model_id).to(DEVICE) | |
model.eval(); | |
print("[INFO] Model loaded successfully.") | |
# Pre-defined palette (extend or tweak as you like) | |
BOX_COLORS = [ | |
"deepskyblue", "red", "lime", "dodgerblue", | |
"cyan", "magenta", "yellow", | |
"orange", "chartreuse" | |
] | |
def draw_boxes(image, boxes, labels, scores, colors=BOX_COLORS, font_path="arial.ttf", font_size=16): | |
""" | |
Draw bounding boxes and labels on a PIL Image. | |
:param image: PIL Image object | |
:param boxes: Iterable of [x_min, y_min, x_max, y_max] | |
:param labels: Iterable of label strings | |
:param scores: Iterable of scalar confidences (0-1) | |
:param colors: List/tuple of colour names or RGB tuples | |
:param font_path: Path to a TTF font for labels | |
:param font_size: Int size of font to use, default 16 | |
:return: PIL Image with drawn boxes | |
""" | |
# Ensure we can iterate colours indefinitely | |
colour_cycle = cycle(colors) | |
draw = ImageDraw.Draw(image) | |
# Pick a font (fallback to default if missing) | |
try: | |
font = ImageFont.truetype(font_path, size=font_size) | |
except IOError: | |
font = ImageFont.load_default(size=font_size) | |
# Assign a consistent colour per label (optional) | |
label_to_colour = {} | |
for box, label, score in zip(boxes, labels, scores): | |
# Reuse colour if label seen before, else take next from cycle | |
colour = label_to_colour.setdefault(label, next(colour_cycle)) | |
x_min, y_min, x_max, y_max = map(int, box) | |
# Draw rectangle | |
draw.rectangle([x_min, y_min, x_max, y_max], outline=colour, width=2) | |
# Compose text | |
text = f"{label} ({score:.3f})" | |
text_size = draw.textbbox((0, 0), text, font=font)[2:] | |
# Draw text background for legibility | |
bg_coords = [x_min, y_min - text_size[1] - 4, | |
x_min + text_size[0] + 4, y_min] | |
draw.rectangle(bg_coords, fill=colour) | |
# Draw text | |
draw.text((x_min + 2, y_min - text_size[1] - 2), | |
text, fill="black", font=font) | |
return image | |
def resize_image_max_dimension(image, max_size=1024): | |
""" | |
Resize an image so that the longest side is at most max_size pixels, | |
while maintaining the aspect ratio. | |
:param image: PIL Image object | |
:param max_size: Maximum dimension in pixels (default: 1024) | |
:return: PIL Image object (resized) | |
""" | |
width, height = image.size | |
# Check if resizing is needed | |
if max(width, height) <= max_size: | |
return image | |
# Calculate new dimensions maintaining aspect ratio | |
ratio = max_size / max(width, height) | |
new_width = int(width * ratio) | |
new_height = int(height * ratio) | |
# Resize the image using high-quality resampling | |
return image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
def detect_and_draw( | |
img: Image.Image, | |
text_query: str, | |
box_threshold: float = 0.4, | |
text_threshold: float = 0.3 | |
) -> Image.Image: | |
""" | |
Detect objects described in `text_query`, draw boxes, return the image. | |
Note: `text_query` must be lowercase and each concept ends with a dot | |
(e.g. 'a cat. a remote control.') | |
""" | |
# Make sure text is lowered | |
text_query = text_query.lower() | |
# If the image size is too large, we make it smaller | |
img = resize_image_max_dimension(img, max_size=1024) | |
# Preprocess the image | |
inputs = processor(images=img, text=text_query, return_tensors="pt").to(DEVICE) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
results = processor.post_process_grounded_object_detection( | |
outputs, | |
inputs.input_ids, | |
box_threshold=box_threshold, | |
text_threshold=text_threshold, | |
target_sizes=[img.size[::-1]] | |
)[0] | |
img_out = img.copy() | |
img_out = draw_boxes( | |
img_out, | |
boxes = results["boxes"].cpu().numpy(), | |
labels = results.get("text_labels", results.get("labels", [])), | |
scores = results["scores"] | |
) | |
return img_out | |
# Create example list | |
examples = [ | |
["examples/IMG_8920.jpeg", "bin. water bottle. hand. shoe.", 0.4, 0.3], | |
["examples/IMG_9435.jpeg", "lettuce. orange slices (group). eggs (group). cheese (group). red cabbage. pear slices (group).", 0.4, 0.3], | |
] | |
# Create Gradio demo | |
demo = gr.Interface( | |
fn = detect_and_draw, | |
inputs = [ | |
gr.Image(type="pil", label="Image"), | |
gr.Textbox(value="", | |
label="Text Query (lowercase, end each with '.', for example 'a bird. a tree.')"), | |
gr.Slider(0.0, 1.0, 0.4, 0.05, label="Box Threshold"), | |
gr.Slider(0.0, 1.0, 0.3, 0.05, label="Text Threshold") | |
], | |
outputs = gr.Image(type="pil", label="Detections"), | |
title = "LLMDet Demo: Open-Vocabulary Grounded Object Detection", | |
description = f"""Upload an image, enter text queries, and adjust thresholds to see detections. | |
Adapted from LLMDet GitHub repo [Hugging Face demo](https://github.com/iSEE-Laboratory/LLMDet/tree/main/hf_model). | |
This space uses: {model_id} | |
See original: | |
* [LLMDet GitHub](https://github.com/iSEE-Laboratory/LLMDet/tree/main?tab=readme-ov-file) | |
* [LLMDet Paper](https://arxiv.org/abs/2501.18954) - LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models | |
* LLMDet model checkpoints: | |
* [Tiny](https://huggingface.co/fushh7/llmdet_swin_tiny_hf) (173M params) | |
* [Base](https://huggingface.co/fushh7/llmdet_swin_base_hf) (233M params) | |
* [Large](https://huggingface.co/fushh7/llmdet_swin_large_hf) (344M params) | |
""", | |
examples = examples, | |
cache_examples = True, | |
) | |
demo.launch() |