File size: 3,054 Bytes
09481f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#! /usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2021 Imperial College London (Pingchuan Ma)
# Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

import warnings
import torchvision
import mediapipe as mp
import os
import cv2
import numpy as np


class LandmarksDetector:
    def __init__(self):
        self.mp_face_detection = mp.solutions.face_detection
        self.short_range_detector = self.mp_face_detection.FaceDetection(min_detection_confidence=0.5, model_selection=0)
        self.full_range_detector = self.mp_face_detection.FaceDetection(min_detection_confidence=0.5, model_selection=1)

    def __call__(self, filename):
        video_frames = torchvision.io.read_video(filename, pts_unit='sec')[0].numpy()
        landmarks = self.detect(video_frames, self.full_range_detector)
        if all(element is None for element in landmarks):
            landmarks = self.detect(video_frames, self.short_range_detector)
            assert any(l is not None for l in landmarks), "Cannot detect any frames in the video"
        return landmarks

    def detect(self, video_frames, detector):
        landmarks = []
        for frame in video_frames:
            results = detector.process(frame)
            if not results.detections:
                landmarks.append(None)
                continue
            face_points = []
            for idx, detected_faces in enumerate(results.detections):
                max_id, max_size = 0, 0
                bboxC = detected_faces.location_data.relative_bounding_box
                ih, iw, ic = frame.shape
                bbox = int(bboxC.xmin * iw), int(bboxC.ymin * ih), int(bboxC.width * iw), int(bboxC.height * ih)
                bbox_size = (bbox[2] - bbox[0]) + (bbox[3] - bbox[1])
                if bbox_size > max_size:
                    max_id, max_size = idx, bbox_size
                lmx = [
                    [int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(0).value].x * iw),
                     int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(0).value].y * ih)],
                    [int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(1).value].x * iw),
                     int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(1).value].y * ih)],
                    [int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(2).value].x * iw),
                     int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(2).value].y * ih)],
                    [int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(3).value].x * iw),
                     int(detected_faces.location_data.relative_keypoints[self.mp_face_detection.FaceKeyPoint(3).value].y * ih)],
                    ]
                face_points.append(lmx)
            landmarks.append(np.array(face_points[max_id]))
        return landmarks