File size: 8,767 Bytes
8fed32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import io
import torch
import base64
import zipfile
from flask import Flask, request, jsonify, render_template, send_file
from medgan.dcgan import Generator_DCGAN, generate_examples_DCGAN
from medgan.progan import Generator_ProGAN, generate_examples_ProGAN, seed_everything
from medgan.stylegan import Generator_SG2, MappingNetwork, generate_examples_SG2
from medgan.vit import TumorDetectionApp
from medgan.wgan import Generator_WGAN, generate_examples_WGAN

# Initialize Flask app
app = Flask(__name__)

# Set seeds for reproducibility
seed_everything()

# Constants
Z_DIM = 256
FEATURES_GEN = 64
CHANNELS_IMG = 3
progan_steps = 6  # Number of steps for ProGAN fade-in
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Model paths
model_paths = {
    "DCGAN": {
        "Glioma": "models/DCGAN-Glioma.pth",
        "Pituitary": "models/DCGAN-Meningioma.pth",
        "Meningioma": "models/DCGAN-Pituitary.pth",
    },
    "ProGAN": {
        "Glioma": "models/ProGAN-Glioma.pth",
        "Meningioma": "models/ProGAN-Meningioma.pth",
        "Pituitary": "models/ProGAN-Pituitary.pth",
    },
    "StyleGAN2": {
        "Glioma": {
            "generator": "models/StyleGAN2-Glioma.pth",
            "mapping": "models/StyleGAN2-Glioma-MappingNet.pth"
        },
        "Meningioma": {
            "generator": "models/StyleGAN2-Meningioma.pth",
            "mapping": "models/StyleGAN2-Meningioma-MappingNet.pth"
        },
        "Pituitary": {
            "generator": "models/StyleGAN2-Pituitary.pth",
            "mapping": "models/StyleGAN2-Pituitary-MappingNet.pth"
        },
    },
    "WGANs": {
        "Glioma": "models/WGAN-Glioma.pth",
        "Meningioma": "models/WGAN-Pituitary.pth",
        "Pituitary": "models/WGAN-Pituitary.pth",
    }
}


# Load DCGAN models
dcgan_generators = {}
for label, path in model_paths["DCGAN"].items():
    model = Generator_DCGAN(1, 256, 64, 3).to(torch.device('cpu'))  # Corrected Z_DIM to 256
    model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
    model.eval()
    dcgan_generators[label] = model

# Load ProGAN models
progan_generators = {}
for label, path in model_paths["ProGAN"].items():
    model = Generator_ProGAN(256, 256, 3).to(torch.device('cpu'))
    model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
    model.eval()
    progan_generators[label] = model

# Load StyleGAN2 models
stylegan2_generators = {}
stylegan2_mapping_networks = {}
for label, paths in model_paths["StyleGAN2"].items():
    gen_model = Generator_SG2(log_resolution=8, W_DIM=256)
    map_net = MappingNetwork(256, 256).to(DEVICE)
    gen_model.load_state_dict(torch.load(paths["generator"], map_location=torch.device('cpu')))
    map_net.load_state_dict(torch.load(paths["mapping"], map_location=torch.device('cpu')))
    gen_model.eval()
    map_net.eval()
    stylegan2_generators[label] = gen_model
    stylegan2_mapping_networks[label] = map_net

# Load WGAN models with weights_only and strict=False
wgan_generators = {}
for label, path in model_paths["WGANs"].items():
    model = Generator_WGAN().to(torch.device('cpu'))
    try:
        # Load the state dict with weights_only=True
        state_dict = torch.load(path, map_location=torch.device('cpu'))
        model.load_state_dict(state_dict, strict=False)  # Allows partial compatibility
        model.eval()
        wgan_generators[label] = model
    except FileNotFoundError:
        print(f"Checkpoint file not found for {label}: {path}")
    except RuntimeError as e:
        print(f"Error loading WGAN model for {label}: {e}")


# Routes
@app.route("/")
def home():
    return render_template("index.html")

@app.route("/about_us")
def about_us():
    return render_template("About_us.html")

@app.route("/generate_info")
def generate_info():
    return render_template("generate.html")

@app.route("/contact")
def contact():
    return render_template("contact.html")

@app.route("/detect_info")
def detect_info():
    return render_template("detect.html")

@app.route("/generate", methods=["POST"])
def generate():
    data = request.form
    model_type = data.get("model")  # "DCGANs", "Progressive GANs", "StyleGAN2", or "WGAN"
    class_name = data.get("class_name")
    num_images = int(data.get("num_images", 1))

    # Select the appropriate model
    if model_type == "DCGANs":
        generators = dcgan_generators
        generation_function = generate_examples_DCGAN
        noise = torch.randn(num_images, Z_DIM, 1, 1).to(torch.device('cpu'))
    elif model_type == "Progressive GANs":
        generators = progan_generators
        generation_function = generate_examples_ProGAN
        noise = torch.randn(num_images, Z_DIM, 1, 1).to(torch.device('cpu'))
    elif model_type == "StyleGAN2":
        generators = stylegan2_generators
        mapping_networks = stylegan2_mapping_networks
        generation_function = generate_examples_SG2
    elif model_type == "WGANs":
        generators = wgan_generators
        generation_function = generate_examples_WGAN
        noise = torch.randn(num_images, 256, 1, 1).to(torch.device('cpu'))
    else:
        return jsonify({"error": "Invalid model type"}), 400

    if class_name not in generators:
        return jsonify({"error": f"Invalid class name for {model_type}"}), 400

    if model_type == "StyleGAN2":
        generator = generators[class_name]
        mapping_net = mapping_networks[class_name]
        images_base64, image_buffers = generation_function(generator, mapping_net, num_images)
    else:
        generator = generators[class_name]
        images_base64, image_buffers = generation_function(generator, noise, num_images)

    # Create ZIP file for download
    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
        for i, buf in enumerate(image_buffers):
            if buf:  # Ensure buffer is not empty
                zip_file.writestr(f"generated_image_{i + 1}.png", buf.getvalue())
    zip_buffer.seek(0)

    # Render template with images and ZIP file link
    return render_template("results.html", images=images_base64, zip_file=True)

@app.route("/download_zip", methods=["GET"])
def download_zip():
    """Route to download the ZIP file containing all generated images."""
    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
        for i, image_base64 in enumerate(app.config.get("images_base64", [])):
            img_data = base64.b64decode(image_base64)
            zip_file.writestr(f"generated_image_{i + 1}.png", img_data)
    zip_buffer.seek(0)
    return send_file(
        zip_buffer,
        mimetype="application/zip",
        as_attachment=True,
        download_name="generated_images.zip"
    )

@app.route("/detect", methods=["POST"])
def detect():
    try:
        # Define paths and device
        model_path = "models/vit-35-Epochs-92-NTP-model.pth"
        DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # Get the uploaded file
        file = request.files.get("file")
        if not file:
            print("No file uploaded.")
            return jsonify({"error": "No file uploaded"}), 400

        # Save the uploaded file temporarily in the static folder
        file_path = os.path.join("static", "temp_image.jpg")
        os.makedirs("static", exist_ok=True)  # Ensure the directory exists
        file.save(file_path)
        print(f"File saved to: {file_path}")

        # Initialize the detection app
        detection_app = TumorDetectionApp(model_path=model_path, device=DEVICE)
        print("Detection app initialized.")

        # Predict the class
        predicted_class = detection_app.predict_image(file_path)
        if predicted_class is None:
            print("Prediction failed.")
            return jsonify({"error": "Prediction failed"}), 500

        # Map the prediction to a class name
        class_mapping = {
            0: "Glioma",
            1: "Meningioma",
            2: "No Tumor",
            3: "Pituitary"
        }
        result = class_mapping.get(predicted_class, "Unknown")
        print(f"Prediction successful. Result: {result}")

        # Serve results with the relative path
        return render_template("results-detect.html", images=["temp_image.jpg"], result=result)

    except Exception as e:
        print(f"Error in /detect route: {e}")
        return jsonify({"error": str(e)}), 500

if __name__ == "__main__":
    app.run(debug=True)