Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
import torch | |
from transformers import AutoImageProcessor, SiglipForImageClassification | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import tempfile | |
import os | |
# β Load model once | |
model_name = "prithivMLmods/deepfake-detector-model-v1" | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
model = SiglipForImageClassification.from_pretrained(model_name) | |
model.eval() | |
# β Load OpenCV Haar face detector | |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
def analyze_deepfake(video_path): | |
cap = cv2.VideoCapture(video_path) | |
frame_preds = [] | |
frame_count = 0 | |
max_frames = 60 | |
while True: | |
ret, frame = cap.read() | |
if not ret or frame_count >= max_frames: | |
break | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) | |
found = False | |
for (x, y, w, h) in faces: | |
face = frame[y:y+h, x:x+w] | |
if face.size == 0: | |
continue | |
face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
inputs = processor(images=Image.fromarray(face_rgb), return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
fake_prob = torch.softmax(logits, dim=-1)[0][1].item() | |
frame_preds.append(fake_prob) | |
found = True | |
break | |
if not found: | |
frame_preds.append(0.5) | |
frame_count += 1 | |
cap.release() | |
# Final Result | |
if frame_preds: | |
avg = np.mean(frame_preds) | |
verdict = "FAKE" if avg > 0.5 else "REAL" | |
result_text = f"β FINAL RESULT: **{verdict}** (confidence: {avg:.2f})" | |
else: | |
result_text = "β No faces detected. Please try another video." | |
# Plot histogram | |
fig, ax = plt.subplots(figsize=(6, 4)) | |
ax.hist(frame_preds, bins=10, color="orange", edgecolor="black") | |
ax.set_title("Fake Confidence per Frame") | |
ax.set_xlabel("Confidence (0=Real, 1=Fake)") | |
ax.set_ylabel("Frame Count") | |
ax.grid(True) | |
# Save plot to temp file | |
plot_path = os.path.join(tempfile.gettempdir(), "plot.png") | |
plt.savefig(plot_path) | |
plt.close(fig) | |
return result_text, plot_path | |
# β Gradio Interface | |
demo = gr.Interface( | |
fn=analyze_deepfake, | |
inputs=gr.Video(label="π€ Upload a video (MP4 only)"), | |
outputs=[gr.Markdown(label="π Result"), gr.Image(type="filepath", label="π Confidence Histogram")], | |
title="π Deepfake Video Detection App", | |
description="Upload a video. The model will detect faces and determine if it's REAL or FAKE using frame-level deepfake classification.", | |
) | |
demo.launch() | |