Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from transformers import AutoImageProcessor, SiglipForImageClassification | |
# β Load model from Hugging Face (no manual files) | |
model_name = "prithivMLmods/deepfake-detector-model-v1" | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
model = SiglipForImageClassification.from_pretrained(model_name) | |
model.eval() | |
# β Haar cascade for face detection | |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
# β Deepfake analysis logic | |
def detect_deepfake(video_path): | |
if video_path is None: | |
return "β Please upload a valid .mp4 video", None | |
cap = cv2.VideoCapture(video_path) | |
preds = [] | |
count = 0 | |
max_frames = 20 | |
while True: | |
ret, frame = cap.read() | |
if not ret or count >= max_frames: | |
break | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = face_detector.detectMultiScale(gray, 1.1, 4) | |
if len(faces) > 0: | |
x, y, w, h = faces[0] # Take first detected face | |
face = frame[y:y+h, x:x+w] | |
if face.size == 0: | |
continue | |
face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
pil_img = Image.fromarray(face_rgb) | |
inputs = processor(images=pil_img, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
prob = torch.softmax(logits, dim=-1)[0][1].item() | |
preds.append(prob) | |
count += 1 | |
cap.release() | |
if not preds: | |
return "β No faces detected. Try a clearer video.", None | |
avg_conf = np.mean(preds) | |
label = "**FAKE**" if avg_conf > 0.5 else "**REAL**" | |
result = f""" | |
π― **Result:** {label} | |
π’ Avg Confidence: {avg_conf:.2f} | |
π Frames Analyzed: {len(preds)} | |
""" | |
# β Create histogram | |
fig, ax = plt.subplots() | |
ax.hist(preds, bins=10, color="red" if avg_conf > 0.5 else "green", edgecolor="black") | |
ax.set_title("Fake Confidence per Frame") | |
ax.set_xlabel("Fake Probability (0 = Real, 1 = Fake)") | |
ax.set_ylabel("Frames") | |
ax.grid(True) | |
return result, fig | |
# β Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## π Deepfake Detector (Transformer-based)") | |
gr.Markdown("Upload a short `.mp4` video. The app will detect faces and classify the video as **REAL** or **FAKE**.") | |
video_input = gr.Video(label="π€ Upload your video") | |
result_output = gr.Markdown() | |
graph_output = gr.Plot() | |
analyze_button = gr.Button("π Analyze") | |
analyze_button.click(fn=detect_deepfake, inputs=video_input, outputs=[result_output, graph_output]) | |
demo.queue().launch() | |