monaavr commited on
Commit
61a648a
Β·
1 Parent(s): 32b95a9

housekeeping

Browse files
Files changed (7) hide show
  1. App/README.md +5 -5
  2. App/drug_app.py +57 -0
  3. App/requirements.txt +2 -2
  4. Makefile +0 -0
  5. README.md +5 -5
  6. drug_app.py +0 -57
  7. requirements.txt +0 -5
App/README.md CHANGED
@@ -1,11 +1,11 @@
1
  ---
2
  title: Drug Classification
3
- emoji: 🐒
4
- colorFrom: green
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.40.0
8
- app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
 
1
  ---
2
  title: Drug Classification
3
+ emoji: πŸ’Š
4
+ colorFrom: yellow
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.16.0
8
+ app_file: drug_app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
App/drug_app.py CHANGED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import skops.io as sio
3
+
4
+ pipe = sio.load("./Model/drug_pipeline.skops", trusted=True)
5
+
6
+
7
+ def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
8
+ """Predict drugs based on patient features.
9
+
10
+ Args:
11
+ age (int): Age of patient
12
+ sex (str): Sex of patient
13
+ blood_pressure (str): Blood pressure level
14
+ cholesterol (str): Cholesterol level
15
+ na_to_k_ratio (float): Ratio of sodium to potassium in blood
16
+
17
+ Returns:
18
+ str: Predicted drug label
19
+ """
20
+ features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
21
+ predicted_drug = pipe.predict([features])[0]
22
+
23
+ label = f"Predicted Drug: {predicted_drug}"
24
+ return label
25
+
26
+
27
+ inputs = [
28
+ gr.Slider(15, 74, step=1, label="Age"),
29
+ gr.Radio(["M", "F"], label="Sex"),
30
+ gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
31
+ gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
32
+ gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
33
+ ]
34
+ outputs = [gr.Label(num_top_classes=5)]
35
+
36
+ examples = [
37
+ [30, "M", "HIGH", "NORMAL", 15.4],
38
+ [35, "F", "LOW", "NORMAL", 8],
39
+ [50, "M", "HIGH", "HIGH", 34],
40
+ ]
41
+
42
+
43
+ title = "Drug Classification"
44
+ description = "Enter the details to correctly identify Drug type?"
45
+ article = "This app is a part of the Beginner's Guide to CI/CD for Machine Learning. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
46
+
47
+
48
+ gr.Interface(
49
+ fn=predict_drug,
50
+ inputs=inputs,
51
+ outputs=outputs,
52
+ examples=examples,
53
+ title=title,
54
+ description=description,
55
+ article=article,
56
+ theme=gr.themes.Soft(),
57
+ ).launch()
App/requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- skops
2
- gradio
 
1
+ scikit-learn
2
+ skops
Makefile DELETED
File without changes
README.md CHANGED
@@ -1,11 +1,11 @@
1
  ---
2
  title: Drug Classification
3
- emoji: 🐒
4
- colorFrom: green
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.40.0
8
- app_file: App/drug_app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
 
1
  ---
2
  title: Drug Classification
3
+ emoji: πŸ’Š
4
+ colorFrom: yellow
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.16.0
8
+ app_file: drug_app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
drug_app.py DELETED
@@ -1,57 +0,0 @@
1
- import gradio as gr
2
- import skops.io as sio
3
-
4
- pipe = sio.load("Model/drug_pipeline.skops", trusted=sio.get_untrusted_types(file = "Model/drug_pipeline.skops"))
5
-
6
- def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
7
- """
8
- Predict drugs based on patient features.
9
-
10
- Args:
11
- age (int): Age of patient
12
- sex (str): Sex of patient
13
- blood_pressure (str): Blood pressure level
14
- cholesterol (str): Cholesterol level
15
- na_to_k_ratio (float): Ratio of sodium to potassium in blood
16
-
17
- Returns:
18
- str: Predicted drug label
19
- """
20
- features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
21
- predicted_drug = pipe.predict([features])[0]
22
-
23
- label = f"Predicted Drug: {predicted_drug}"
24
- return label
25
-
26
- inputs = [
27
- gr.Slider(15, 74, step=1, label="Age"),
28
- gr.Radio(["M", "F"], label="Sex"),
29
- gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
30
- gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
31
- gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
32
- ]
33
- outputs = [gr.Label(num_top_classes=5)]
34
-
35
- examples = [
36
- [30, "M", "HIGH", "NORMAL", 15.4],
37
- [35, "F", "LOW", "NORMAL", 8],
38
- [50, "M", "HIGH", "HIGH", 34],
39
- ]
40
-
41
-
42
- title = "Drug Classification"
43
- description = "Enter the details to correctly identify Drug type?"
44
- article = "This app is a part of the Beginner's Guide to CI/CD for Machine Learning. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
45
-
46
-
47
- gr.Interface(
48
- fn=predict_drug,
49
- inputs=inputs,
50
- outputs=outputs,
51
- examples=examples,
52
- title=title,
53
- description=description,
54
- article=article,
55
- theme=gr.themes.Soft(),
56
- ).launch()
57
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt DELETED
@@ -1,5 +0,0 @@
1
- scikit-learn
2
- skops
3
- black
4
- pandas
5
- matplotlib