Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,895 Bytes
d517723 37d36e2 d517723 37d36e2 d5fb97f 73078d3 d5fb97f d517723 37d36e2 d517723 400cb6b 37d36e2 400cb6b 37d36e2 d517723 400cb6b adac8fb 400cb6b d517723 400cb6b 37d36e2 73078d3 adac8fb 73078d3 37d36e2 400cb6b d517723 37d36e2 73078d3 d517723 73078d3 400cb6b 73078d3 400cb6b 73078d3 400cb6b d517723 37d36e2 d517723 34a304e 73078d3 adac8fb d517723 37d36e2 d517723 37d36e2 400cb6b adac8fb 37d36e2 d517723 37d36e2 d517723 37d36e2 d517723 37d36e2 d517723 37d36e2 d517723 37d36e2 d517723 37d36e2 d517723 37d36e2 d517723 37d36e2 d517723 400cb6b 37d36e2 d517723 37d36e2 d517723 400cb6b 37d36e2 d517723 400cb6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
import spaces
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline
from huggingface_hub import login
import os
# Add this import to fix BaseTunerLayer error
try:
from peft.tuners.tuners_utils import BaseTunerLayer
except ImportError:
print("Warning: peft not installed. LoRA functionality may be limited.")
# Login to Hugging Face using environment variable
login(token=os.getenv("HF_TOKEN"))
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# Base model
repo = "stabilityai/stable-diffusion-3.5-large"
pipe = StableDiffusion3Pipeline.from_pretrained(
repo,
torch_dtype=dtype,
use_safetensors=True,
variant="fp16" if dtype == torch.float16 else None
).to(device)
# List of LoRA models (can expand later)
loras = {
"None": None,
"SD3.5 Photorealistic": "prithivMLmods/SD3.5-Large-Photorealistic-LoRA",
"Face Helper SDXL": "ostris/face-helper-sdxl-lora",
"LCM LoRA SDXL": "latent-consistency/lcm-lora-sdxl"
}
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536
class LoRAManager:
"""Manages LoRA loading and unloading with proper error handling"""
def __init__(self, pipe):
self.pipe = pipe
self.current_lora = None
def load_lora(self, lora_repo, lora_scale=0.8):
"""Load a LoRA adapter with error handling"""
try:
# First try to unfuse any existing LoRA
self.unfuse_current_lora()
# Try different common LoRA weight file names
weight_names_to_try = [
"pytorch_lora_weights.safetensors",
"Photorealistic-SD3.5-Large-LoRA.safetensors", # For prithivMLmods model
"diffusion_pytorch_model.safetensors",
None # Let diffusers auto-detect
]
success = False
for weight_name in weight_names_to_try:
try:
if weight_name:
self.pipe.load_lora_weights(lora_repo, weight_name=weight_name)
else:
self.pipe.load_lora_weights(lora_repo)
success = True
break
except Exception as e:
print(f"Failed to load with weight_name='{weight_name}': {e}")
continue
if not success:
print(f"Error loading LoRA {lora_repo}: No compatible weight file found")
return False
self.pipe.fuse_lora(lora_scale=lora_scale)
self.current_lora = lora_repo
print(f"Successfully loaded LoRA: {lora_repo}")
return True
except Exception as e:
print(f"Error loading LoRA {lora_repo}: {e}")
return False
def unfuse_current_lora(self):
"""Safely unfuse current LoRA"""
if self.current_lora is None:
return
try:
self.pipe.unfuse_lora()
print(f"Unfused LoRA: {self.current_lora}")
self.current_lora = None
except Exception as e:
print(f"Warning: Could not unfuse LoRA: {e}")
self.current_lora = None # Reset anyway
def truncate_prompt(prompt, max_length=77):
"""Truncate prompt to fit CLIP token limit"""
if not prompt:
return prompt
# Simple word-based truncation (not perfect but helps)
words = prompt.split()
if len(words) <= max_length:
return prompt
truncated = " ".join(words[:max_length])
print(f"Warning: Prompt truncated from {len(words)} to {max_length} words")
return truncated
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_choice, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Truncate prompts to avoid CLIP token limit
prompt = truncate_prompt(prompt, max_length=70)
negative_prompt = truncate_prompt(negative_prompt, max_length=70)
# Handle LoRA loading with better error handling
if lora_choice != "None":
lora_manager = LoRAManager(pipe)
if not lora_manager.load_lora(loras[lora_choice]):
raise gr.Error(f"Failed to load LoRA adapter: {lora_choice}")
else:
lora_manager = LoRAManager(pipe)
lora_manager.unfuse_current_lora()
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator
).images[0]
return image, seed
examples = [
"Samurai girl in the snow forest. Show on Sony camera f1.2",
"A stylish Japanese woman in her early 20s stands confidently in front of a cold, industrial background in a cinematic close-up. She wears round black sunglasses, a wide-brimmed black hat, and a brown suede coat with white shearling lining layered over a black turtleneck. A bold silver chain necklace adds a sharp urban edge to her look. Her expression is fierce and composed, staring straight into the camera with quiet intensity. The lighting is cool and bluish, creating a moody, neo-noir vibe — evoking the feel of a modern Tokyo underground fashion scene.",
"A young Indonesian woman from Bandung walks directly toward the camera across a cracked, sun-bleached desert highway under a vast, empty sky. She wears a bold futuristic high-fashion outfit: a structured matte-black coat with exaggerated shoulders and a high collar, flowing just above her minimalistic sand-toned boots. Her hijab is styled tightly and sleek under the high collar, blending seamlessly with the look — matte black with wind-swept form, no hair visible. Her makeup is bold and geometric, featuring sharp silvery eyeliner and face highlights under the eyes, catching the sun's glare. Her expression is cold, focused, and defiant — one brow slightly raised as she pierces the lens with calm intensity. The directional sunlight from the right casts elongated, sharp-edged shadows across the cracked highway. The background is pure dystopian silence: endless dry plains stretch into the distance with a few collapsed, rusted billboards leaning in the far horizon. No buildings, no people — just wind, fashion, and desert solitude. Shot in ultra high-resolution, harsh sunlight, cinematic composition, dystopian fashion editorial."
]
css = """
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Stable Diffusion 3.5 with LoRA + Photoreal Enhancements
Choose a high-quality LoRA model to enhance your generations. All models are tested and compatible with SD3.5.
**Available LoRA Models:**
- **SD3.5 Photorealistic**: Specialized for photorealistic portraits and scenes
- **Face Helper SDXL**: Enhances facial features and expressions
- **LCM LoRA SDXL**: Reduces inference steps for faster generation
Powered by [StabilityAI SD3.5 Large](https://huggingface.co/stabilityai/stable-diffusion-3.5-large).
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_choice = gr.Dropdown(
label="LoRA adapter",
choices=list(loras.keys()),
value="None"
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_choice],
outputs=[result, seed]
)
demo.launch()
|