Spaces:
Sleeping
Sleeping
File size: 20,628 Bytes
bbcbb55 2764934 bbcbb55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import os
import logging
from contextlib import asynccontextmanager
from typing import List, Optional, Literal, Dict, Any
import torch
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ConfigDict
from sentence_transformers import SparseEncoder
from transformers import AutoTokenizer
# --------------------------------------------------------------------------------------
# Logging
# --------------------------------------------------------------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("main")
# --------------------------------------------------------------------------------------
# Device selection — intentionally NEVER choose MPS for SPLADE due to sparse-op gaps
# --------------------------------------------------------------------------------------
def choose_device() -> str:
if torch.cuda.is_available():
return "cuda"
# Avoid MPS for SPLADE (missing sparse ops). Default to CPU instead.
return "cpu"
DEVICE = choose_device()
logger.info(f"Selected device: {DEVICE}")
# --------------------------------------------------------------------------------------
# Model loading
# --------------------------------------------------------------------------------------
MODEL_ID = "sparse-encoder/splade-robbert-dutch-base-v1"
def load_sparse_encoder(model_id: str, device: str) -> SparseEncoder:
"""Load SparseEncoder. Prefer safetensors when available, but fall back to .bin.
Torch >= 2.6 is required by Transformers to load .bin safely.
"""
# Do NOT force safetensors globally; some repos only publish .bin
os.environ.pop("TRANSFORMERS_USE_SAFETENSORS", None)
try:
logger.info(f"Loading Dutch SPLADE model on {device}...")
m = SparseEncoder(model_id, device=device, model_kwargs={"use_safetensors": True})
return m
except OSError as e:
msg = str(e)
if "does not appear to have a file named model.safetensors" in msg:
logger.info("No safetensors in repo; retrying with .bin weights.")
return SparseEncoder(model_id, device=device)
raise
model: Optional[SparseEncoder] = None
# Tokenizer for mapping vocab ids -> readable tokens in explanations
tokenizer: Optional[AutoTokenizer] = None
@asynccontextmanager
async def lifespan(app: FastAPI):
global model, tokenizer
try:
model = load_sparse_encoder(MODEL_ID, DEVICE)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
logger.info("Model & tokenizer loaded.")
yield
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
finally:
# Allow GC to clean up if server stops
pass
app = FastAPI(title="Sparse Embedding API", lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# --------------------------------------------------------------------------------------
# Schemas
# --------------------------------------------------------------------------------------
class HealthResponse(BaseModel):
# Pydantic v2 warns about names starting with model_; allow them explicitly
model_config = ConfigDict(protected_namespaces=())
model_loaded: bool
model_name: str
device: str
class EmbeddingsRequest(BaseModel):
texts: List[str]
mode: Literal["query", "document"] = "query"
normalize: bool = True
# Keep payloads light; 0/None means no cap
max_active_dims: Optional[int] = 0
class EmbeddingRow(BaseModel):
indices: List[int]
weights: List[float]
class EmbeddingsResponse(BaseModel):
data: List[EmbeddingRow]
dim: int
info: Dict[str, Any]
# --- Similarity API ---
class SimilarityRequest(BaseModel):
queries: List[str]
documents: List[str]
normalize: bool = True
max_active_dims: Optional[int] = 0
top_k: Optional[int] = 5
class SimilarityHit(BaseModel):
doc_index: int
score: float
text: str
class SimilarityResponse(BaseModel):
results: List[List[SimilarityHit]] # one list per query
info: Dict[str, Any]
# --- Explain API ---
class TokenContribution(BaseModel):
token_id: int
token: str
query_weight: float
doc_weight: float
contribution: float
class ExplainRequest(BaseModel):
query: str
document: str
normalize: bool = True
max_active_dims: Optional[int] = 0
top_k_tokens: int = 15
class ExplainResponse(BaseModel):
score: float
top_tokens: List[TokenContribution]
info: Dict[str, Any]
# --------------------------------------------------------------------------------------
# Helpers
# --------------------------------------------------------------------------------------
def torch_sparse_batch_to_rows(t: torch.Tensor) -> List[Dict[str, Any]]:
"""Convert a 2D torch sparse tensor [batch, dim] to list of {indices, weights} per row."""
if not isinstance(t, torch.Tensor):
raise TypeError("Expected a torch.Tensor from SparseEncoder")
if not t.is_sparse:
# Dense fallback (shouldn't happen with SparseEncoder). Convert per-row.
t = t.to("cpu")
rows = []
for r in t:
nz = torch.nonzero(r, as_tuple=True)[0]
rows.append({"indices": nz.tolist(), "weights": r[nz].tolist()})
return rows
# COO expected; coalesce and split by row
t = t.coalesce() # merge duplicates
idx = t.indices() # [2, nnz]
vals = t.values() # [nnz]
batch_size = t.size(0)
rows_out: List[Dict[str, Any]] = []
row_ids = idx[0]
col_ids = idx[1]
# For each row, mask and gather its entries
for i in range(batch_size):
m = row_ids == i
if torch.count_nonzero(m) == 0:
rows_out.append({"indices": [], "weights": []})
continue
cols_i = col_ids[m].to("cpu")
vals_i = vals[m].to("cpu")
rows_out.append({"indices": cols_i.tolist(), "weights": vals_i.tolist()})
return rows_out
def top_token_contributions(q_row: Dict[str, Any], d_row: Dict[str, Any], k: int) -> List[Dict[str, Any]]:
"""Intersect query/doc indices and score tokens by product of weights."""
q_map = {int(i): float(w) for i, w in zip(q_row.get("indices", []), q_row.get("weights", []))}
contribs = []
for i, dw in zip(d_row.get("indices", []), d_row.get("weights", [])):
i = int(i)
dw = float(dw)
qw = q_map.get(i)
if qw is not None:
contribs.append((i, qw, dw, qw * dw))
contribs.sort(key=lambda t: t[3], reverse=True)
top = contribs[: max(k, 0) or 15]
out: List[Dict[str, Any]] = []
for tok_id, qw, dw, c in top:
try:
# RobBERT uses RoBERTa/BPE-style tokens (Ġ denotes a leading space)
tok = tokenizer.convert_ids_to_tokens([tok_id])[0]
pretty = tok.replace("Ġ", " ").replace("▁", " ")
except Exception:
tok = pretty = str(tok_id)
out.append({
"token_id": tok_id,
"token": pretty,
"query_weight": qw,
"doc_weight": dw,
"contribution": c,
})
return out
# --------------------------------------------------------------------------------------
# Routes
# --------------------------------------------------------------------------------------
@app.get("/")
async def root():
return {
"message": "Dutch SPLADE Embedding API",
"docs": "https://moimobrian-py-api.hf.space/docs",
"health": "https://moimobrian-py-api.hf.space/health"
}
@app.get("/health", response_model=HealthResponse)
async def health() -> HealthResponse:
return HealthResponse(
model_loaded=model is not None,
model_name=MODEL_ID,
device=DEVICE,
)
@app.post("/embeddings", response_model=EmbeddingsResponse)
async def embeddings(req: EmbeddingsRequest) -> EmbeddingsResponse:
if model is None:
raise HTTPException(status_code=503, detail="Model not loaded")
if not req.texts:
raise HTTPException(status_code=400, detail="'texts' must be a non-empty list")
prompt_name = "query" if req.mode == "query" else "document"
max_k = req.max_active_dims or None
logger.info(f"Processing {len(req.texts)} texts in {req.mode} mode")
try:
if req.mode == "query":
embs = model.encode_query(
req.texts,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
else:
embs = model.encode_document(
req.texts,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
rows = torch_sparse_batch_to_rows(embs)
# Model card states ~50k dims; we can read the 2nd dimension from the tensor
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
return EmbeddingsResponse(
data=[EmbeddingRow(**r) for r in rows],
dim=dim,
info={
"mode": req.mode,
"normalize": req.normalize,
"max_active_dims": max_k,
"device": DEVICE,
},
)
except RuntimeError as e:
# If anything MPS-related sneaks in, hard-move to CPU and retry once
msg = str(e)
if "MPS" in msg or "to_sparse" in msg:
logger.warning("Encountered MPS/sparse op issue; retrying on CPU.")
try:
model.to("cpu")
if req.mode == "query":
embs = model.encode_query(
req.texts,
convert_to_tensor=True,
device="cpu",
normalize=req.normalize,
max_active_dims=max_k,
)
else:
embs = model.encode_document(
req.texts,
convert_to_tensor=True,
device="cpu",
normalize=req.normalize,
max_active_dims=max_k,
)
rows = torch_sparse_batch_to_rows(embs)
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
return EmbeddingsResponse(
data=[EmbeddingRow(**r) for r in rows],
dim=dim,
info={
"mode": req.mode,
"normalize": req.normalize,
"max_active_dims": max_k,
"device": "cpu",
"retry": True,
},
)
except Exception:
logger.exception("CPU retry failed")
raise HTTPException(status_code=500, detail=msg)
# Unknown runtime error
logger.exception("Error generating embeddings")
raise HTTPException(status_code=500, detail=msg)
except Exception as e:
logger.exception("Error generating embeddings")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/similarity", response_model=SimilarityResponse)
async def similarity(req: SimilarityRequest) -> SimilarityResponse:
if model is None:
raise HTTPException(status_code=503, detail="Model not loaded")
if not req.queries:
raise HTTPException(status_code=400, detail="'queries' must be a non-empty list")
if not req.documents:
raise HTTPException(status_code=400, detail="'documents' must be a non-empty list")
max_k = req.max_active_dims or None
try:
q = model.encode_query(
req.queries,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
d = model.encode_document(
req.documents,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
scores = model.similarity(q, d).to("cpu") # [num_queries, num_docs]
results: List[List[SimilarityHit]] = []
k = min(req.top_k or 5, len(req.documents))
for i in range(scores.size(0)):
vals, idxs = torch.topk(scores[i], k=k)
q_hits: List[SimilarityHit] = []
for v, j in zip(vals.tolist(), idxs.tolist()):
q_hits.append(SimilarityHit(doc_index=j, score=float(v), text=req.documents[j]))
results.append(q_hits)
return SimilarityResponse(
results=results,
info={
"normalize": req.normalize,
"max_active_dims": max_k,
"device": DEVICE,
},
)
except Exception as e:
logger.exception("Error computing similarity")
raise HTTPException(status_code=500, detail=str(e))
# --------------------------------------------------------------------------------------
# Routes
# --------------------------------------------------------------------------------------
@app.get("/health", response_model=HealthResponse)
async def health() -> HealthResponse:
return HealthResponse(
model_loaded=model is not None,
model_name=MODEL_ID,
device=DEVICE,
)
@app.post("/embeddings", response_model=EmbeddingsResponse)
async def embeddings(req: EmbeddingsRequest) -> EmbeddingsResponse:
if model is None:
raise HTTPException(status_code=503, detail="Model not loaded")
if not req.texts:
raise HTTPException(status_code=400, detail="'texts' must be a non-empty list")
prompt_name = "query" if req.mode == "query" else "document"
max_k = req.max_active_dims or None
logger.info(f"Processing {len(req.texts)} texts in {req.mode} mode")
try:
if req.mode == "query":
embs = model.encode_query(
req.texts,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
else:
embs = model.encode_document(
req.texts,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
rows = torch_sparse_batch_to_rows(embs)
# Model card states ~50k dims; we can read the 2nd dimension from the tensor
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
return EmbeddingsResponse(
data=[EmbeddingRow(**r) for r in rows],
dim=dim,
info={
"mode": req.mode,
"normalize": req.normalize,
"max_active_dims": max_k,
"device": DEVICE,
},
)
except RuntimeError as e:
# If anything MPS-related sneaks in, hard-move to CPU and retry once
msg = str(e)
if "MPS" in msg or "to_sparse" in msg:
logger.warning("Encountered MPS/sparse op issue; retrying on CPU.")
try:
model.to("cpu")
if req.mode == "query":
embs = model.encode_query(
req.texts,
convert_to_tensor=True,
device="cpu",
normalize=req.normalize,
max_active_dims=max_k,
)
else:
embs = model.encode_document(
req.texts,
convert_to_tensor=True,
device="cpu",
normalize=req.normalize,
max_active_dims=max_k,
)
rows = torch_sparse_batch_to_rows(embs)
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
return EmbeddingsResponse(
data=[EmbeddingRow(**r) for r in rows],
dim=dim,
info={
"mode": req.mode,
"normalize": req.normalize,
"max_active_dims": max_k,
"device": "cpu",
"retry": True,
},
)
except Exception:
logger.exception("CPU retry failed")
raise HTTPException(status_code=500, detail=msg)
# Unknown runtime error
logger.exception("Error generating embeddings")
raise HTTPException(status_code=500, detail=msg)
except Exception as e:
logger.exception("Error generating embeddings")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/similarity", response_model=SimilarityResponse)
async def similarity(req: SimilarityRequest) -> SimilarityResponse:
if model is None:
raise HTTPException(status_code=503, detail="Model not loaded")
if not req.queries:
raise HTTPException(status_code=400, detail="'queries' must be a non-empty list")
if not req.documents:
raise HTTPException(status_code=400, detail="'documents' must be a non-empty list")
max_k = req.max_active_dims or None
try:
q = model.encode_query(
req.queries,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
d = model.encode_document(
req.documents,
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
scores = model.similarity(q, d).to("cpu") # [num_queries, num_docs]
results: List[List[SimilarityHit]] = []
k = min(req.top_k or 5, len(req.documents))
for i in range(scores.size(0)):
vals, idxs = torch.topk(scores[i], k=k)
q_hits: List[SimilarityHit] = []
for v, j in zip(vals.tolist(), idxs.tolist()):
q_hits.append(SimilarityHit(doc_index=j, score=float(v), text=req.documents[j]))
results.append(q_hits)
return SimilarityResponse(
results=results,
info={
"normalize": req.normalize,
"max_active_dims": max_k,
"device": DEVICE,
},
)
except Exception as e:
logger.exception("Error computing similarity")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/explain", response_model=ExplainResponse)
async def explain(req: ExplainRequest) -> ExplainResponse:
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model/tokenizer not loaded")
max_k = req.max_active_dims or None
try:
q = model.encode_query(
[req.query],
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
d = model.encode_document(
[req.document],
convert_to_tensor=True,
device=DEVICE,
normalize=req.normalize,
max_active_dims=max_k,
)
score = float(model.similarity(q, d)[0, 0].item())
q_row = torch_sparse_batch_to_rows(q)[0]
d_row = torch_sparse_batch_to_rows(d)[0]
tokens = top_token_contributions(q_row, d_row, req.top_k_tokens)
return ExplainResponse(
score=score,
top_tokens=[TokenContribution(**t) for t in tokens],
info={
"normalize": req.normalize,
"max_active_dims": max_k,
"device": DEVICE,
},
)
except Exception as e:
logger.exception("Error explaining match")
raise HTTPException(status_code=500, detail=str(e))
# --------------------------------------------------------------------------------------
# Local dev runner
# --------------------------------------------------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"main:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info",
)
|