First_agent_template / Gradio_UI.py
mohammedelfeky-ai's picture
Update Gradio_UI.py
d9e8945 verified
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from typing import Optional
import tempfile
from PIL import Image as PILImage
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
import gradio as gr
def pull_messages_from_step_dict(step_log: MemoryStep):
"""Extract messages as dicts for Gradio type='messages' Chatbot"""
if isinstance(step_log, ActionStep):
step_number_str = f"Step {step_log.step_number}" if step_log.step_number is not None else "Processing"
yield {"role": "assistant", "content": f"**{step_number_str}**"}
if hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
model_output = re.sub(r"<end_code>", "", model_output)
model_output = model_output.strip()
yield {"role": "assistant", "content": model_output}
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
tc = step_log.tool_calls[0]
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
args = tc.arguments
if isinstance(args, dict):
args_str = str(args.get("answer", str(args)))
else:
args_str = str(args).strip()
if tc.name == "python_interpreter":
code_content = args_str
code_content = re.sub(r"^```python\s*\n?", "", code_content)
code_content = re.sub(r"\n?```\s*$", "", code_content)
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
code_content = re.sub(r"\s*<end_code>\s*$", "", code_content)
code_content = code_content.strip()
tool_info_md += f"Executing Code:\n```python\n{code_content}\n```\n"
else:
tool_info_md += f"Arguments: `{args_str}`\n"
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
obs_content = step_log.observations.strip()
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
if obs_content:
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n"
if hasattr(step_log, "error") and step_log.error:
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
yield {"role": "assistant", "content": tool_info_md.strip()}
elif hasattr(step_log, "error") and step_log.error:
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
footnote_parts = []
if step_log.step_number is not None:
footnote_parts.append(f"Step {step_log.step_number}")
if hasattr(step_log, "duration") and step_log.duration is not None:
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None:
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
if footnote_parts:
footnote_text = " | ".join(footnote_parts)
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
yield {"role": "assistant", "content": "---"}
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
if hasattr(agent, 'interaction_logs'):
agent.interaction_logs.clear()
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
all_step_logs = []
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
all_step_logs.append(step_log)
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for msg_dict in pull_messages_from_step_dict(step_log):
yield msg_dict
if not all_step_logs:
yield {"role": "assistant", "content": "Agent did not produce any output."}
return
final_answer_content = all_step_logs[-1]
actual_content_for_handling = final_answer_content
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image, tuple)):
actual_content_for_handling = final_answer_content.final_answer
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")
if isinstance(actual_content_for_handling, PILImage.Image):
print("DEBUG Gradio (stream_to_gradio): Actual content IS a raw PIL Image.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
actual_content_for_handling.save(tmp_file, format="PNG")
image_path_for_gradio = tmp_file.name
print(f"DEBUG Gradio: Saved PIL image to temp path: {image_path_for_gradio}")
yield {"role": "assistant", "content": (image_path_for_gradio, "Generated Image")}
return
except Exception as e:
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
return
final_answer_processed = handle_agent_output_types(actual_content_for_handling)
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")
if isinstance(final_answer_processed, AgentText):
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
elif isinstance(final_answer_processed, AgentImage):
image_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
if image_path and os.path.exists(image_path):
yield {"role": "assistant", "content": (image_path, "Generated Image (from AgentImage)")}
else:
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid."
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
elif isinstance(final_answer_processed, AgentAudio):
audio_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
if audio_path and os.path.exists(audio_path):
yield {"role": "assistant", "content": (audio_path, "Generated Audio")}
else:
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
else:
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
class GradioUI:
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
self.agent = agent
self.file_upload_folder = None
self._latest_file_path_for_download = None
def _get_created_document_path(self):
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created document paths.")
for log_entry in reversed(self.agent.interaction_logs):
if isinstance(log_entry, ActionStep):
observations = getattr(log_entry, 'observations', None)
tool_calls = getattr(log_entry, 'tool_calls', [])
is_python_interpreter_step = any(tc.name == "python_interpreter" for tc in tool_calls)
if is_python_interpreter_step and observations and isinstance(observations, str):
# CRITICAL DEBUG LINE: Print the exact observations string
print(f"DEBUG Gradio UI (_get_created_document_path): Python Interpreter Observations: '''{observations}'''")
match = re.search(
r"(?:Document created \((?:docx|pdf|txt)\):|Document converted to PDF:)\s*(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))",
observations,
re.MULTILINE
)
if match:
extracted_path = match.group(1)
print(f"DEBUG Gradio UI: Regex matched. Extracted path: '{extracted_path}'")
normalized_path = os.path.normpath(extracted_path)
if os.path.exists(normalized_path):
print(f"DEBUG Gradio UI: Validated path for download: {normalized_path}")
return normalized_path
else:
print(f"DEBUG Gradio UI: Path from create_document output ('{normalized_path}') does not exist.")
print("DEBUG Gradio UI: No valid generated document path found in agent logs.")
return None
def interact_with_agent(self, prompt_text: str, current_chat_history: list):
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
yield updated_chat_history, gr.update(value=None, visible=False) # For file_download_display_component
agent_responses_for_history = []
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
agent_responses_for_history.append(msg_dict)
yield updated_chat_history + agent_responses_for_history, gr.update(value=None, visible=False) # For file_download_display_component
final_chat_display_content = updated_chat_history + agent_responses_for_history
document_path_to_display = self._get_created_document_path()
if document_path_to_display:
print(f"DEBUG Gradio: Document found for display: {document_path_to_display}")
# CORRECTED: Use gr.update() for the File component
yield final_chat_display_content, gr.update(value=document_path_to_display,
label=os.path.basename(document_path_to_display),
visible=True)
else:
print(f"DEBUG Gradio: No document found for display.")
# CORRECTED: Use gr.update() for the File component
yield final_chat_display_content, gr.update(value=None, visible=False)
def log_user_message(self, text_input_value: str):
full_prompt = text_input_value
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...")
return full_prompt, ""
# prepare_and_show_download_file is not needed if we directly update the gr.File component
def launch(self, **kwargs):
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
prepared_prompt_for_agent = gr.State("")
gr.Markdown("## Smol Talk with your Agent")
with gr.Row(equal_height=False):
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(
type="messages",
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
height=700,
show_copy_button=True,
bubble_full_width=False,
show_label=False
)
text_message_input = gr.Textbox(
lines=1,
placeholder="Type your message and press Enter, or Shift+Enter for new line...",
show_label=False
)
with gr.Column(scale=1):
# "Generated File" section directly shows the gr.File component
gr.Markdown("### Generated Document")
file_download_display_component = gr.File(
label="Downloadable Document",
visible=False,
interactive=False
)
text_message_input.submit(
self.log_user_message,
[text_message_input],
[prepared_prompt_for_agent, text_message_input]
).then(
self.interact_with_agent,
[prepared_prompt_for_agent, chatbot_display],
[chatbot_display, file_download_display_component] # Outputs update chatbot and file component
)
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
__all__ = ["stream_to_gradio", "GradioUI"]