First_agent_template / Gradio_UI.py
mohammedelfeky-ai's picture
Update Gradio_UI.py
0cc5955 verified
raw
history blame
19 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent # Ensure MultiStepAgent is correctly referenced
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
def pull_messages_from_step(
step_log: MemoryStep,
):
"""Extract ChatMessage objects from agent steps with proper nesting"""
import gradio as gr
if isinstance(step_log, ActionStep):
# Output the step number
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
# First yield the thought/reasoning from the LLM
if hasattr(step_log, "model_output") and step_log.model_output is not None:
# Clean up the LLM output
model_output = step_log.model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output)
# For tool calls, create a parent message
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
parent_id = f"call_{len(step_log.tool_calls)}_{step_log.step_number or 'x'}" # Make parent_id more unique
# Tool call becomes the parent message with timing info
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
content = content.strip()
if not content.startswith("```python"): # Ensure it's a python block
content = f"```python\n{content}\n```"
else: # If it is, ensure newlines are correct
content = content.replace("```python", "```python\n").replace("\n```", "\n```")
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"id": parent_id,
"status": "pending",
},
)
yield parent_message_tool
if hasattr(step_log, "observations") and (
step_log.observations is not None and step_log.observations.strip()
):
log_content = step_log.observations.strip()
if log_content: # Only yield if there's actual content
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"{log_content}",
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
)
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
)
# This direct update might not work as expected as yield creates new objects.
# Status update is visual; actual logic might be more complex.
parent_message_tool.metadata["status"] = "done"
elif hasattr(step_log, "error") and step_log.error is not None: # Standalone errors
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
step_footnote_parts = [step_number]
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None and \
hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
token_str = (
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
)
step_footnote_parts.append(token_str)
if hasattr(step_log, "duration") and step_log.duration is not None:
step_duration = f" | Duration: {round(float(step_log.duration), 2)}s"
step_footnote_parts.append(step_duration)
step_footnote_text = "".join(filter(None, step_footnote_parts))
if step_footnote_text:
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote_text}</span> """
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
yield gr.ChatMessage(role="assistant", content="-----")
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
import gradio as gr
# Reset interaction logs for the new run if the agent has this attribute
if hasattr(agent, 'interaction_logs'):
agent.interaction_logs.clear()
print("DEBUG: Cleared agent interaction_logs for new run.")
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None: # Check for None
if isinstance(step_log, ActionStep): # Only add token counts to ActionSteps
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for message in pull_messages_from_step(step_log):
yield message
# After the loop, step_log holds the final answer or the last step's log
final_answer_content = step_log
final_answer_processed = handle_agent_output_types(final_answer_content)
if isinstance(final_answer_processed, AgentText):
yield gr.ChatMessage(role="assistant", content=f"**Final answer:**\n{final_answer_processed.to_string()}\n")
elif isinstance(final_answer_processed, AgentImage):
yield gr.ChatMessage(role="assistant", content={"path": final_answer_processed.to_string(), "mime_type": "image/png"})
elif isinstance(final_answer_processed, AgentAudio):
yield gr.ChatMessage(role="assistant", content={"path": final_answer_processed.to_string(), "mime_type": "audio/wav"})
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer_processed)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.makedirs(self.file_upload_folder, exist_ok=True) # Use makedirs
self._latest_file_path_for_download = None # For download button state
def _check_for_created_file(self):
"""Helper function to check interaction logs for a created file path."""
self._latest_file_path_for_download = None # Reset
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
print(f"DEBUG UI: Checking {len(self.agent.interaction_logs)} interaction log entries.")
for log_entry in self.agent.interaction_logs:
if log_entry.get("tool_name") == "create_document":
tool_output_value = log_entry.get("tool_output")
print(f"DEBUG UI: Log for 'create_document', output: {tool_output_value}")
if tool_output_value and isinstance(tool_output_value, str):
if not tool_output_value.strip().startswith("ERROR:"):
normalized_path = os.path.normpath(tool_output_value)
if os.path.exists(normalized_path):
self._latest_file_path_for_download = normalized_path
print(f"DEBUG UI: File path for download set: {self._latest_file_path_for_download}")
return True # Found a valid file
else:
print(f"DEBUG UI: Path from log ('{normalized_path}') does not exist.")
else:
print(f"DEBUG UI: 'create_document' tool reported error: {tool_output_value}")
return False
def interact_with_agent(self, prompt, messages_history, download_btn_state, file_output_state):
import gradio as gr
messages_history.append(gr.ChatMessage(role="user", content=prompt))
yield messages_history, gr.update(visible=False), gr.update(value=None, visible=False) # Hide download items initially
# Stream agent messages to chatbot
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
messages_history.append(msg)
yield messages_history, gr.update(visible=False), gr.update(value=None, visible=False) # Keep hidden during streaming
# After streaming all agent messages, check for created file
file_found = self._check_for_created_file()
# Update UI based on whether a file was found
# Yielding final state for chatbot, download button, and file component
yield messages_history, gr.update(visible=file_found), gr.update(value=None, visible=False)
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
import gradio as gr
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
if mime_type is None: # Fallback if guess_type returns None
mime_type = file.type # Gradio File object has a 'type' attribute
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox(f"File type '{mime_type}' disallowed", visible=True), file_uploads_log
original_name = os.path.basename(file.name)
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
# Ensure correct extension based on mime type, if possible
base_name, current_ext = os.path.splitext(sanitized_name)
type_to_ext_map = {
"application/pdf": ".pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
"text/plain": ".txt",
}
expected_ext = type_to_ext_map.get(mime_type)
if expected_ext and current_ext.lower() != expected_ext:
sanitized_name = base_name + expected_ext
file_path = os.path.join(self.file_upload_folder, sanitized_name)
shutil.copy(file.name, file_path) # file.name is the temp path of the uploaded file
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
# This function prepares the prompt that goes to the agent.
# It also clears the text_input box.
full_prompt = text_input
if file_uploads_log: # Check if list is not empty
full_prompt += (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
)
return full_prompt, "" # Return the full prompt and an empty string to clear input
def prepare_and_show_download_file(self):
import gradio as gr
if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
print(f"DEBUG UI: Preparing download for UI: {self._latest_file_path_for_download}")
return gr.File.update(value=self._latest_file_path_for_download,
label=os.path.basename(self._latest_file_path_for_download),
visible=True)
else:
print("DEBUG UI: No valid file path to prepare for download component.")
gr.Warning("No file available for download or path is invalid.")
return gr.File.update(visible=False)
def launch(self, **kwargs):
import gradio as gr
with gr.Blocks(fill_height=True, theme=gr.themes.Soft()) as demo: # Added a theme
# --- State Variables ---
# stored_messages is used to build the prompt for the agent, not directly for chatbot display here.
# The chatbot takes messages directly from interact_with_agent.
# We'll use chat_history_state for the chatbot's message list.
chat_history_state = gr.State([])
file_uploads_log = gr.State([]) # Tracks paths of uploaded files
# --- UI Layout ---
gr.Markdown("# Smol Talk with your Agent") # Title
with gr.Row():
with gr.Column(scale=3): # Main chat area
chatbot = gr.Chatbot(
label="Agent Interaction",
# Bubble full width can make text hard to read, try default
# bubble_full_width=False,
avatar_images=(
None, # User avatar
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png" # Agent avatar
),
height=600
)
text_input = gr.Textbox(
lines=1,
label="Your Message to the Agent",
placeholder="Type your message and press Enter..."
)
with gr.Column(scale=1): # Sidebar for uploads and downloads
if self.file_upload_folder is not None:
gr.Markdown("### File Upload")
upload_file_component = gr.File(label="Upload a supporting file")
upload_status_display = gr.Textbox(label="Upload Status", interactive=False, visible=True, lines=2) # Make visible by default
upload_file_component.upload( # Use 'upload' event for gr.File
self.upload_file,
[upload_file_component, file_uploads_log],
[upload_status_display, file_uploads_log],
)
gr.Markdown("### Generated File")
# This button becomes visible if a file is created by the agent
download_btn = gr.Button("Download Generated File", visible=False)
# This gr.File component becomes visible and populated when the button above is clicked
file_output_display = gr.File(label="Downloadable Document", visible=False, interactive=False)
# --- Event Handling ---
# When user submits text_input:
# 1. log_user_message: prepares the prompt (text + file info), clears text_input.
# The output 'prepared_prompt' is then passed to interact_with_agent.
# 2. interact_with_agent: streams agent's responses to chatbot, updates download button.
# We need a state to hold the prepared prompt temporarily if log_user_message is separate
prepared_prompt_state = gr.State("")
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[prepared_prompt_state, text_input] # prepared_prompt_state gets the full prompt, text_input is cleared
).then(
self.interact_with_agent,
[prepared_prompt_state, chat_history_state, download_btn, file_output_display], # Pass current UI states
[chat_history_state, download_btn, file_output_display] # Update these UI states
)
# When download_btn is clicked:
download_btn.click(
self.prepare_and_show_download_file,
[], # No inputs needed from UI for this action
[file_output_display] # Update the file_output_display component
)
# Launch the Gradio app
# Set share=False if running locally or on Spaces where share=True might be an issue
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
__all__ = ["stream_to_gradio", "GradioUI"]