File size: 20,364 Bytes
deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 0cc5955 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 0cc5955 deafbd7 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc deafbd7 9a2a3bc 0cc5955 9a2a3bc 0cc5955 deafbd7 9a2a3bc deafbd7 9a2a3bc 0cc5955 9a2a3bc deafbd7 9a2a3bc deafbd7 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 deafbd7 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 deafbd7 0cc5955 deafbd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional
import tempfile # Added for PIL image saving
from PIL import Image as PILImage # Added for PIL image handling
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
import gradio as gr # Ensure gradio is imported at the top level
def pull_messages_from_step_dict(step_log: MemoryStep):
"""Extract messages as dicts for Gradio type='messages' Chatbot"""
if isinstance(step_log, ActionStep):
step_number_str = f"Step {step_log.step_number}" if step_log.step_number is not None else "Processing"
yield {"role": "assistant", "content": f"**{step_number_str}**"}
if hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
# More robust cleaning for <end_code> potentially wrapped in backticks or with newlines
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
model_output = re.sub(r"<end_code>", "", model_output) # Remove standalone tag
model_output = model_output.strip()
yield {"role": "assistant", "content": model_output}
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
tc = step_log.tool_calls[0] # Process first tool call for simplicity in this format
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
args = tc.arguments
if isinstance(args, dict):
args_str = str(args.get("answer", str(args)))
else:
args_str = str(args).strip()
if tc.name == "python_interpreter":
code_content = args_str
# Clean up common wrapping issues
code_content = re.sub(r"^```python\s*\n?", "", code_content)
code_content = re.sub(r"\n?```\s*$", "", code_content)
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
code_content = re.sub(r"\s*<end_code>\s*$", "", code_content)
code_content = code_content.strip()
tool_info_md += f"Executing Code:\n```python\n{code_content}\n```\n"
else:
tool_info_md += f"Arguments: `{args_str}`\n"
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
obs_content = step_log.observations.strip()
# Remove "Execution logs:" prefix if present for cleaner display
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
if obs_content: # Only show if there's something after stripping
tool_info_md += f"📝 **Tool Output/Logs:**\n```\n{obs_content}\n```\n"
if hasattr(step_log, "error") and step_log.error:
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
yield {"role": "assistant", "content": tool_info_md.strip()}
elif hasattr(step_log, "error") and step_log.error: # Standalone error not from a tool call
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
# --- Minimal footnote for type="messages" ---
footnote_parts = []
if step_log.step_number is not None:
footnote_parts.append(f"Step {step_log.step_number}")
if hasattr(step_log, "duration") and step_log.duration is not None:
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None: # Check for None
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None: # Check for None
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
if footnote_parts:
footnote_text = " | ".join(footnote_parts)
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
yield {"role": "assistant", "content": "---"} # Separator
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent, yields message dicts for Gradio type='messages' Chatbot."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
if hasattr(agent, 'interaction_logs'): # Clear logs for this new agent run
agent.interaction_logs.clear()
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for msg_dict in pull_messages_from_step_dict(step_log): # Use new dict-yielding function
yield msg_dict
final_answer_content = step_log # Last step_log is the final output/state
# --- Handle final answer for type="messages" ---
if isinstance(final_answer_content, PILImage.Image):
print("DEBUG Gradio (stream_to_gradio): Final answer is raw PIL Image.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
final_answer_content.save(tmp_file, format="PNG")
image_path_for_gradio = tmp_file.name
print(f"DEBUG Gradio: Saved PIL image to temp path: {image_path_for_gradio}")
# For Gradio type="messages", image content is just the path string
yield {"role": "assistant", "content": image_path_for_gradio}
return
except Exception as e:
print(f"DEBUG Gradio: Error saving PIL image from final_answer_content: {e}")
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
return
final_answer_processed = handle_agent_output_types(final_answer_content)
if isinstance(final_answer_processed, AgentText):
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
elif isinstance(final_answer_processed, AgentImage):
image_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): AgentImage path: {image_path}")
if image_path and os.path.exists(image_path):
yield {"role": "assistant", "content": image_path}
else:
err_msg = f"Error: Image path from AgentImage not found or invalid ('{image_path}')"
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
elif isinstance(final_answer_processed, AgentAudio):
audio_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
if audio_path and os.path.exists(audio_path):
yield {"role": "assistant", "content": audio_path}
else:
err_msg = f"Error: Audio path from AgentAudio not found ('{audio_path}')"
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
else:
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(self.file_upload_folder):
os.makedirs(self.file_upload_folder, exist_ok=True)
self._latest_file_path_for_download = None
def _check_for_created_file(self):
self._latest_file_path_for_download = None
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created files.")
for log_entry in reversed(self.agent.interaction_logs): # Check recent logs first
if isinstance(log_entry, ActionStep) and hasattr(log_entry, 'tool_calls') and log_entry.tool_calls:
for tool_call in log_entry.tool_calls:
if tool_call.name == "create_document":
tool_output_value = getattr(log_entry, 'observations', None)
print(f"DEBUG Gradio UI: Log for 'create_document' call, observed output: {tool_output_value}")
if tool_output_value and isinstance(tool_output_value, str):
# Try to extract path if it's wrapped, e.g. by "Execution logs:"
cleaned_output = re.sub(r"^Execution logs:\s*", "", tool_output_value).strip()
path_match = re.search(r"(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", cleaned_output)
extracted_path = path_match.group(1) if path_match else cleaned_output
if not extracted_path.lower().startswith("error:"):
normalized_path = os.path.normpath(extracted_path)
if os.path.exists(normalized_path):
self._latest_file_path_for_download = normalized_path
print(f"DEBUG Gradio UI: File path for download set: {self._latest_file_path_for_download}")
return True
else:
print(f"DEBUG Gradio UI: Path from 'create_document' log ('{normalized_path}') does not exist.")
else:
print(f"DEBUG Gradio UI: 'create_document' tool reported error in observations: {extracted_path}")
print("DEBUG Gradio UI: No valid 'create_document' output found for download.")
return False
def interact_with_agent(self, prompt_text: str, current_chat_tuples: list):
# current_chat_tuples is the history from the chatbot (list of lists/tuples)
# Convert to 'messages' format if needed, or adapt stream_to_gradio if chatbot is not type="messages"
# For type="messages", current_chat_tuples is already list of dicts.
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
print(f"DEBUG Gradio: Current chat history (input): {current_chat_tuples}")
# Add user's new message to the chat history list
current_chat_messages = current_chat_tuples + [{"role": "user", "content": prompt_text}]
# Initial yield to show user message immediately and hide download items
yield current_chat_messages, gr.update(visible=False), gr.update(value=None, visible=False)
# Stream agent messages
agent_responses_for_history = []
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
agent_responses_for_history.append(msg_dict)
# Yield progressively: current user message + all agent messages so far
yield current_chat_messages + agent_responses_for_history, gr.update(visible=False), gr.update(value=None, visible=False)
# After streaming all agent messages, check for created file
file_found = self._check_for_created_file()
# Final state for UI components
final_chat_display = current_chat_messages + agent_responses_for_history
print(f"DEBUG Gradio: Final chat history for display: {final_chat_display}")
yield final_chat_display, gr.update(visible=file_found), gr.update(value=None, visible=False)
def upload_file(self, file, file_uploads_log_state):
if file is None: # No file selected
return gr.update(value="No file uploaded.", visible=True), file_uploads_log_state
# Ensure file_upload_folder exists (it should from __init__)
if not self.file_upload_folder or not os.path.exists(self.file_upload_folder):
os.makedirs(self.file_upload_folder, exist_ok=True) # Defensive check
allowed_file_types = [
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
"image/jpeg", "image/png", # Added image types
]
# Gradio File object has 'name' (temp path) and 'orig_name'
original_name = file.orig_name if hasattr(file, 'orig_name') else os.path.basename(file.name)
# Try to guess mime type from temp file name first, then from original name if needed
mime_type, _ = mimetypes.guess_type(file.name)
if mime_type is None: # Fallback
mime_type, _ = mimetypes.guess_type(original_name)
if mime_type not in allowed_file_types:
return gr.update(value=f"File type '{mime_type or 'unknown'}' for '{original_name}' is disallowed.", visible=True), file_uploads_log_state
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
base_name, current_ext = os.path.splitext(sanitized_name)
type_to_ext_map = {v: k for k, v_list in mimetypes. প্রেফারেন্সেস.items() for v in v_list} # More robust ext map
type_to_ext_map.update({ # Manual overrides / common types
"application/pdf": ".pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
"text/plain": ".txt", "image/jpeg": ".jpg", "image/png": ".png"
})
expected_ext = type_to_ext_map.get(mime_type)
if expected_ext and current_ext.lower() != expected_ext.lower():
sanitized_name = base_name + expected_ext
destination_path = os.path.join(self.file_upload_folder, sanitized_name)
try:
shutil.copy(file.name, destination_path) # file.name is the temp path from Gradio
print(f"DEBUG Gradio: File '{original_name}' copied to '{destination_path}'")
updated_log = file_uploads_log_state + [destination_path]
return gr.update(value=f"Uploaded: {original_name} (as {sanitized_name})", visible=True), updated_log
except Exception as e:
print(f"DEBUG Gradio: Error copying uploaded file: {e}")
return gr.update(value=f"Error uploading {original_name}: {e}", visible=True), file_uploads_log_state
def log_user_message(self, text_input_value: str, current_file_uploads: list):
full_prompt = text_input_value
if current_file_uploads:
files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt}")
return full_prompt, "" # Clears the text input box
def prepare_and_show_download_file(self):
if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
print(f"DEBUG Gradio UI: Preparing download for UI component: {self._latest_file_path_for_download}")
return gr.File.update(value=self._latest_file_path_for_download,
label=os.path.basename(self._latest_file_path_for_download),
visible=True)
else:
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
gr.Warning("No file available for download or path is invalid.")
return gr.File.update(visible=False)
def launch(self, **kwargs):
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
file_uploads_log_state = gr.State([])
prepared_prompt_for_agent = gr.State("")
gr.Markdown("# agente inteligente")
with gr.Row():
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(
label="Agent Interaction",
type="messages",
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
height=600,
show_copy_button=True,
bubble_full_width=False
)
text_message_input = gr.Textbox(
lines=1,
label="Your Message to the Agent",
placeholder="Type your message and press Enter, or Shift+Enter for new line..."
)
with gr.Column(scale=1):
if self.file_upload_folder is not None:
gr.Markdown("### File Upload")
file_uploader = gr.File(label="Upload a supporting file (PDF, DOCX, TXT, JPG, PNG)")
upload_status_text = gr.Textbox(label="Upload Status", interactive=False, lines=2, max_lines=4)
file_uploader.upload(
self.upload_file,
[file_uploader, file_uploads_log_state],
[upload_status_text, file_uploads_log_state],
)
gr.Markdown("### Generated File")
download_action_button = gr.Button("Download Generated File", visible=False)
file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False)
# Event Handling Chain for Text Submission
text_message_input.submit(
self.log_user_message, # Step 1: Prepare prompt, clear input
[text_message_input, file_uploads_log_state],
[prepared_prompt_for_agent, text_message_input]
).then(
self.interact_with_agent, # Step 2: Run agent, stream to chatbot, update download button
[prepared_prompt_for_agent, chatbot_display],
[chatbot_display, download_action_button, file_download_display_component]
)
download_action_button.click(
self.prepare_and_show_download_file,
[],
[file_download_display_component]
)
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
__all__ = ["stream_to_gradio", "GradioUI"] |