chatbot / app.py
mobinln's picture
add log
d6de68f verified
raw
history blame
1.94 kB
import gradio as gr
from llama_cpp import Llama
model = "Qwen/Qwen2-7B-Instruct-GGUF"
llm = Llama.from_pretrained(
repo_id=model,
filename="qwen2-7b-instruct-q4_k_m.gguf",
verbose=True,
use_mmap=False,
use_mlock=True,
n_threads=2,
n_threads_batch=2,
n_ctx=8000,
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# response = llm.create_chat_completion(
# messages=messages,
# max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# )
# return response["choices"][0]["message"]["content"]
response = ""
completion = llm.create_chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for message in completion:
print(message)
token = message['choices'][0]['delta']['text']
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant.",
label="System message",
),
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
description=model,
)
if __name__ == "__main__":
demo.launch()